1,734 research outputs found

    Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malnutrition <it>in utero </it>can "program" the fetal tissues, making them more vulnerable to metabolic disturbances. Also there is association between excessive consumption of fructose and the development of metabolic syndrome. However, there is little information regarding the acute effect of physical exercise on subjects recovered from malnutrition and/or fed with a fructose-rich diet. The objective of this study was to evaluate the metabolic aspects and the response to acute physical exercise in rats recovered from fetal protein malnutrition with a fructose-rich diet.</p> <p>Methods</p> <p>Pregnant Wistar rats were fed with a balanced (B) diet or a low-protein (L) diet. After birth and until 60 days of age, the offspring were distributed into four groups according to the diet received: B: B diet during the whole experiment; balanced/fructose (BF): B diet until birth and fructose-rich (F) diet afterwards; low protein/balanced (LB): L diet until birth and B diet afterwards; low protein/fructose (LF): L diet until birth and F diet afterwards.</p> <p>Results</p> <p>The excess fructose intake reduced the body weight gain, especially in the BF group. Furthermore, the serum total cholesterol and the LDL cholesterol were elevated in this group. In the LF group, the serum total cholesterol and the muscle glycogen increased. Acute physical exercise increased the serum concentrations of glucose, triglycerides, HDL cholesterol and liver lipids and reduced the concentrations of muscle glycogen in all groups.</p> <p>Conclusion</p> <p>An excess fructose intake induced some signs of metabolic syndrome. However, protein malnutrition appeared to protect against the short term effects of fructose. In other hand, most responses to acute physical exercise were not influenced by early malnutrition and/or by the fructose overload.</p

    Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD), insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet.</p> <p>Methods</p> <p>We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G) and a fructose-rich diet group (60% fructose). The animals were tested for maximal lactate-steady state (MLSS) in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol). Another third were submitted to the training from 90 to 120 days (late protocol), and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT) and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations.</p> <p>Results</p> <p>The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group.</p> <p>Conclusions</p> <p>The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.</p

    Different exercise protocols improve metabolic syndrome markers, tissue triglycerides content and antioxidant status in rats

    Get PDF
    Background: An increase in the prevalence of obesity entails great expenditure for governments. Physical exercise is a powerful tool in the combat against obesity and obesity-associated diseases. This study sought to determine the effect of three different exercise protocols on metabolic syndrome and lipid peroxidation markers and the activity of antioxidant enzymes in adult Wistar rats (120 days old).Methods: Animals were randomly divided into four groups: the control (C) group was kept sedentary throughout the study; the aerobic group (A) swam1 h per day, 5 days per week, at 80% lactate threshold intensity; the strength group (S) performed strength training with four series of 10 jumps, 5 days per week; and the Concurrent group (AS) was trained using the aerobic protocol three days per week and the strength protocol two days per week.Results: Groups A and S exhibited a reduction in body weight compared to group C. All exercised animals showed a reduction in triglyceride concentrations in fatty tissues and the liver. Exercised animals also exhibited a reduction in lipid peroxidation markers (TBARS) and an increase in serum superoxide dismutase activity. Animals in group A had increased levels of liver catalase and superoxide dismutase activities.Conclusions: We concluded that all physical activity protocols improved the antioxidant systems of the animals and decreased the storage of triglycerides in the investigated tissues

    Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability

    Get PDF
    Ideally, biomaterials designed to play specific physical and physiological roles in vivo should comprise components and microarchitectures analogous to those of the native tissues they intend to replace. For that, implantable biomaterials need to be carefully designed to have the correct structural and compositional properties, which consequently impart their bio-function. In this study, we showed that the control of such properties can be defined from the bottom-up, using smart surface templates to modulate the structure, composition, and bio-mechanics of human transplantable tissues. Using multi-functional peptide amphiphile-coated surfaces with different anisotropies, we were able to control the phenotype of corneal stromal cells and instruct them to fabricate self-lifting tissues that closely emulated the native stromal lamellae of the human cornea. The type and arrangement of the extracellular matrix comprising these corneal stromal Self-Lifting Analogous Tissue Equivalents (SLATEs) were then evaluated in detail, and was shown to correlate with tissue function. Specifically, SLATEs comprising aligned collagen fibrils were shown to be significantly thicker, denser, and more resistant to proteolytic degradation compared to SLATEs formed with randomly-oriented constituents. In addition, SLATEs were highly transparent while providing increased absorption to near-UV radiation. Importantly, corneal stromal SLATEs were capable of constituting tissues with a higher-order complexity, either by creating thicker tissues through stacking or by serving as substrate to support a fully-differentiated, stratified corneal epithelium. SLATEs were also deemed safe as implants in a rabbit corneal model, being capable of integrating with the surrounding host tissue without provoking inflammation, neo-vascularization, or any other signs of rejection after a 9-months follow-up. This work thus paves the way for the de novo biofabrication of easy-retrievable, scaffold-free human tissues with controlled structural, compositional, and functional properties to replace corneal, as well as other, tissuesThis study was supported by the Medical Research Council grant MR/ K017217/1, the Biotechnology and Biological Sciences Research Council, grant BB/I008187/1 and the Spanish Plan Nacional de InvestigaciĂłn CientĂ­fica, Desarrollo e InnovaciĂłn TecnolĂłgica (I + D + I) from the Spanish Ministry of Economy and Competitiveness (Instituto de Salud Carlos III), grant FIS PI14/0955 (cofinanced by FEDER funds, European Union)

    High Genetic Diversity among Community-Associated Staphylococcus aureus in Europe: Results from a Multicenter Study

    Get PDF
    Background: Several studies have addressed the epidemiology of community-associated Staphylococcus aureus (CA-SA) in Europe; nonetheless, a comprehensive perspective remains unclear. In this study, we aimed to describe the population structure of CA-SA and to shed light on the origin of methicillin-resistant S. aureus (MRSA) in this continent. Methods and Findings: A total of 568 colonization and infection isolates, comprising both MRSA and methicillin-susceptible S. aureus (MSSA), were recovered in 16 European countries, from community and community-onset infections. The genetic background of isolates was characterized by molecular typing techniques (spa typing, pulsed-field gel electrophoresis and multilocus sequence typing) and the presence of PVL and ACME was tested by PCR. MRSA were further characterized by SCCmec typing. We found that 59 % of all isolates were associated with community-associated clones. Most MRSA were related with USA300 (ST8-IVa and variants) (40%), followed by the European clone (ST80-IVc and derivatives) (28%) and the Taiwan clone (ST59-IVa and related clonal types) (15%). A total of 83 % of MRSA carried Panton-Valentine leukocidin (PVL) and 14 % carried the arginine catabolic mobile element (ACME). Surprisingly, we found a high genetic diversity among MRSA clonal types (ST-SCCmec), Simpson’s index of diversity = 0.852 (0.788–0.916). Specifically, about half of the isolates carried novel associations between genetic background and SCCmec. Analysis by BURP showed that some CA-MSSA and CA-MRS

    Muscle protein metabolism in neonatal alloxan-administered rats: effects of continuous and intermittent swimming training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to examine the effects of intermittent and continuous swimming training on muscle protein metabolism in neonatal alloxan-administered rats.</p> <p>Methods</p> <p>Wistar rats were used and divided into six groups: sedentary alloxan (SA), sedentary control (SC), continuous trained alloxan (CA), intermittent trained alloxan (IA), continuous trained control (CC) and intermittent trained control (IC). Alloxan (250 mg/kg body weight) was injected into newborn rats at 6 days of age. The continuous training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 5% of body weight; uninterrupted swimming for 1 h/day, five days a week. The intermittent training protocol consisted of 12 weeks of swimming training in individual cylinder tanks while supporting a load that was 15% of body weight; 30 s of activity interrupted by 30 s of rest for a total of 20 min/day, five days a week.</p> <p>Results</p> <p>At 28 days, the alloxan animals displayed higher glycemia after glucose overload than the control animals. No differences in insulinemia among the groups were detected. At 120 days, no differences in serum albumin and total protein among the groups were observed. Compared to the other groups, DNA concentrations were higher in the alloxan animals that were subjected to continuous training, whereas the DNA/protein ratio was higher in the alloxan animals that were subjected to intermittent training.</p> <p>Conclusion</p> <p>It was concluded that continuous and intermittent training sessions were effective in altering muscle growth by hyperplasia and hypertrophy, respectively, in alloxan-administered animals.</p

    Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

    Get PDF
    Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases

    THE APOGEE SPECTROSCOPIC SURVEY OF KEPLER PLANET HOSTS: FEASIBILITY, EFFICIENCY, AND FIRST RESULTS

    Get PDF
    The Kepler mission has yielded a large number of planet candidates from among the Kepler Objects of Interest(KOIs), but spectroscopic follow-up of these relatively faint stars is a serious bottleneck in confirming and characterizing these systems. We present motivation and survey design for an ongoing project with the Sloan Digital Sky Survey III multiplexed Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph to monitor hundreds of KOI host stars. We report some of our first results using representative targets from our sample, which include current planet candidates that we find to be false positives, as well as candidates listed as false positives that we do not find to be spectroscopic binaries. With this survey, KOI hosts are observed over ∌20 epochs at a radial velocity (RV) precision of 100–200ms−1. These observations can easily identify a majority of false positives caused by physically associated stellar or substellar binaries, and in many cases, fully characterize their orbits. We demonstrate that APOGEE is capable of achieving RV precision at the 100–200ms−1 level over long time baselines, and that APOGEE’s multiplexing capability makes it substantially more efficient at identifying false positives due to binaries than other single-object spectrographs working to confirm KOIs as planets. These APOGEE RVs enable ancillary science projects, such as studies of fundamental stellar astrophysics or intrinsically rare substellar companions. The coadded APOGEE spectra can be used to derive stellar properties (Teff, log g) and chemical abundances of over a dozen elements to probe correlations of planet properties with individual elemental abundances

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society

    SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    Get PDF
    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2, which is now completed, measured medium-resolution (R=1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa
    • 

    corecore