20 research outputs found

    Measurement of climate-relevant trace gases via infrared spectroscopy

    Get PDF
    The goal of this thesis was to develop and build a fully automated FTIR system for total column measurements of atmospheric trace gases. As part of TCCON, it is planned to install the system in the tropics where such measurements are very sparse. The designated site is Ascension Island, a British oversea territory in the South Atlantic. This unique location should provide excellent observation conditions for the FTIR instrument. Due to its small size and very scarce vegetation, the influence from local sources and sinks on the CO2 and CH4 measurements should be minimal. This work describes the history of the system in three parts: Development, Calibration, and Testing. Chapter 2 introduces the design of the system: chosen components and self- made parts like a custom solar tracker protection dome are explained and the automation concept of the system is illustrated. Besides that, first results of total column measurements in Jena are presented. In 2009, after the Jena FTIR system was completed, it took part in the IMECC aircraft calibration campaign. The integration of the FTIR measurements into the existing ground-based in-situ network requires a calibration. Earlier campaigns (Wunch et al., 2010) pointed out that it is highly likely that there is a species-specific uniform calibration factor for all TCCON FTIR systems. The goal of the IMECC aircraft campaign was to verify these findings and to calibrate six of the European TCCON stations. The results of the CH4 calibration are presented in Chapter 3. After successfully taking part in the calibration campaign, the FTIR system was shipped to Australia for a test campaign. The aim was to prove the systems functionality and to compare the measurements of the system to the ones performed by a similar instrument operated by the University of Wollongong (UoW), Australia. The results of this campaign are presented in Chapter 4

    Signatures of phase transitions in the microwave response of YbRh2Si2

    Full text link
    We used a spectroscopic microwave technique utilizing superconducting stripline resonators at frequencies between 3 GHz and 15 GHz to examine the charge dynamics of YbRh2Si2 at temperatures and magnetic fields close to the quantum critical point. The different electronic phases of this heavy-fermion compound, in particular the antiferromagnetic, Fermi-liquid, and non-Fermi-liquid regimes, were probed with temperature-dependent microwave measurements between 40 mK and 600 mK at a set of different magnetic fields up to 140 mT. Signatures of phase transitions were observed, which give information about the dynamic response of this peculiar material that exhibits field-tuned quantum criticality and pronounced deviations from Fermi-liquid theory.Comment: 5 pages, 3 figure

    Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2

    Full text link
    We report magnetic and calorimetric measurements down to T = 1 mK on the canonical heavy-electron metal YbRh2Si2. The data reveal the development of nuclear antiferromagnetic order slightly above 2 mK. The latter weakens the primary electronic antiferromagnetism, thereby paving the way for heavy-electron superconductivity below Tc = 2 mK. Our results demonstrate that superconductivity driven by quantum criticality is a general phenomenon.Comment: 39 pages including Supplementary Materials. Version before copy-edited by the journa

    Microwave spectroscopy on heavy-fermion systems: probing the dynamics of charges and magnetic moments

    Full text link
    Investigating solids with light gives direct access to charge dynamics, electronic and magnetic excitations. For heavy fermions, one has to adjust the frequency of the probing light to the small characteristic energy scales, leading to spectroscopy with microwaves. We review general concepts of the frequency-dependent conductivity of heavy fermions, including the slow Drude relaxation and the transition to a superconducting state, which we also demonstrate with experimental data taken on UPd2Al3. We discuss the optical response of a Fermi liquid and how it might be observed in heavy fermions. Microwave studies with focus on quantum criticality in heavy fermions concern the charge response, but also the magnetic moments can be addressed via electron spin resonance (ESR). We discuss the case of YbRh2Si2, the open questions concerning ESR of heavy fermions, and how these might be addressed in the future. This includes an overview of the presently available experimental techniques for microwave studies on heavy fermions, with a focus on broadband studies using the Corbino approach and on planar superconducting resonators.Comment: 11 pages, 6 figures, proceedings of QCnP 201

    High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems

    Get PDF
    Coastal methane (CH4) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, delta C-13-CH4 values, and CH4 sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460 nM CH4) with habitat-specific seasonal and diurnal patterns. We observed (1) delta C-13-CH signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of similar to 1 eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that similar to 50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4 sources (i.e., releasing >= 100 mu mol CH4 m(-2) day(-1) in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.Peer reviewe

    Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems

    Get PDF
    Publisher Copyright: © 2023, The Author(s).Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining such CH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 – 2.9 mg CH4 m−2 d−1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that were sustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.Peer reviewe

    Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellite

    Prediction of second neurological attack in patients with clinically isolated syndrome using support vector machines

    Get PDF
    The aim of this study is to predict the conversion from clinically isolated syndrome to clinically definite multiple sclerosis using support vector machines. The two groups of converters and non-converters are classified using features that were calculated from baseline data of 73 patients. The data consists of standard magnetic resonance images, binary lesion masks, and clinical and demographic information. 15 features were calculated and all combinations of them were iteratively tested for their predictive capacity using polynomial kernels and radial basis functions with leave-one-out cross-validation. The accuracy of this prediction is up to 86.4% with a sensitivity and specificity in the same range indicating that this is a feasible approach for the prediction of a second clinical attack in patients with clinically isolated syndromes, and that the chosen features are appropriate. The two features gender and location of onset lesions have been used in all feature combinations leading to a high accuracy suggesting that they are highly predictive. However, it is necessary to add supporting features to maximise the accuracy. © 2013 IEEE
    corecore