1,374 research outputs found

    The Ukrainian war and the pandemic: the impact on public health and the need for new health digital tools and the next level of intelligence.

    Get PDF
    Against the background of the war in Ukraine, the COVID-19 pandemic has waned from public consciousness as the threat of the virus to health is outweighed by safety concerns during the war. Pandemic restrictions in the European region are being lifted despite low vaccination rates in Central and Eastern European countries and a lack of effective containment strategies. However, Central and Eastern European countries are influenced most by the flow of refugees from neighboring Ukraine where a triple health crisis occurs: an overloaded health system, an ongoing COVID-19 pandemic, and the war. The aim: to review the progress regarding viral surveillance technologies that use genomics, digital, and informational tools, to find the gap in the literature and formulate policy recommendations for continuing surveillance in the context of permacrisis. Unstructured search was conducted through scientific (PubMed and Google Scholar databases) and grey literature using the keywords. The paper highlights aspects of war-related problems of infectious diseases control in Europe, new challenges in healthcare connected with COVID-19 pandemic and war in Ukraine and provides discussion on the role of innovative surveillance systems in tackling infection outbreaks (with COVID-19 pandemic as an example). The paper overviews perspectives of the implementation of the discussed measures. Future COVID-19 outbreaks and new variants are possible. Complex adaptive system models, new tools, and the next level of health and digital intelligence are needed to provide timely and valuable insights. Combining lessons learned from the COVID-19 pandemic, the threat of war, and the need for continuous outbreaks surveillance, new public health and digital intelligence tools must be designed and implemented at regional, European, and global levels

    Ti-Zr-Si-Nb nanocrystalline alloys and metallic glasses: Assessment on the structure, thermal stability, corrosion and mechanical properties

    Get PDF
    The development of novel Ti-based amorphous or \u3b2-phase nanostructured metallic materials could have significant benefits for implant applications, due to improved corrosion and mechanical characteristics (lower Young's modulus, better wear performance, improved fracture toughness) in comparison to the standardized \u3b1+\u3b2 titanium alloys. Moreover, the devitrification phenomenon, occurring during heating, could contribute to lower input power during additive manufacturing technologies. Ti-based alloy ribbons were obtained by melt-spinning, considering the ultra-fast cooling rates this method can provide. The titanium alloys contain in various proportions Zr, Nb, and Si (Ti60Zr10Si15Nb15, Ti64Zr10Si15Nb11, Ti56Zr10Si15Nb19) in various proportions. These elements were chosen due to their reported biological safety, as in the case of Zr and Nb, and the metallic glass-forming ability and biocompatibility of Si. The morphology and chemical composition were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy, while the structural features (crystallinity, phase attribution after devitrification (after heat treatment)) were assessed by X-ray diffraction. Some of the mechanical properties (hardness, Young's modulus) were assessed by instrumented indentation. The thermal stability and crystallization temperatures were measured by differential thermal analysis. High-intensity exothermal peaks were observed during heating of melt-spun ribbons. The corrosion behavior was assessed by electrocorrosion tests. The results show the potential of these alloys to be used as materials for biomedical applications

    Death by SARS-CoV 2: a Romanian COVID-19 multi-centre comorbidity study

    Get PDF
    Evidence regarding the relation between SARS-CoV-2 mortality and the underlying medical condition is scarce. We conducted an observational, retrospective study based on Romanian official data about location, age, gender and comorbidities for COVID-19 fatalities. Our findings indicate that males, hypertension, diabetes, obesity and chronic kidney disease were most frequent in the COVID-19 fatalities, that the burden of disease was low, and that the prognosis for 1-year survival probability was high in the sample. Evidence shows that age-dependent pairs of comorbidities could be a negative prognosis factor for the severity of disease for the SARS-CoV 2 infection

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Colour removal from beet molasses by ultrafiltration with activated charcoal

    Get PDF
    The feasibility of an activated charcoal/ultrafiltration process for the decolouration of beet molasses, and subsequent regeneration of the exhausted charcoal by thermal and chemical methods, has been examined. Several activated charcoals were assayed prior to the selection of Norit powdered activated charcoal (NPAC). The affinity of NPAC for the adsorption of dark colour compounds was studied at 25 C. A colour reduction of over 98% was achieved at equilibrium using an NPAC concentration of 5 g/L from the beet molasses at pH 3, with no betaine or sucrose co-adsorptions. Crossflow ultrafiltration experiments with NPAC were performed using a 100 kDa TiO2 tubular ceramic membrane, in order to select the optimal operating conditions. Experiments with several ultrafiltration stages for the decolouration of beet molasses, and subsequent regeneration of the exhausted NPAC with sodium hydroxide solutions, were also performed under the conditions identified previously. A high colour reduction in the molasses of over 96.5%, with no adsorption of sucrose, betaine, citric acid or lactic acid, was achieved in the first decolouration stage at pH 3, with an initial NPAC concentration of 5 g/L, a transmembrane pressure of 100 kPa and a feed flowrate of 4.24 L/h. A good NPAC regeneration was obtained, with a loss of its colour removal capacity lower than 10%.Ministerio de Economía y Competitividad (MINECO, Spain) through project CTQ2011-25239 and from the Junta de Castilla y León through project BU175A11-

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF
    corecore