48 research outputs found

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Top-quark mass measurement in the all-hadronic tt¯ decay channel at √s=8 TeV with the ATLAS detector

    Get PDF
    The top-quark mass is measured in the all-hadronic top-antitop quark decay channel using proton-proton collisions at a centre-of-mass energy of √s=8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The data set used in the analysis corresponds to an integrated luminosity of 20.2 fb−1. The large multi-jet background is modelled using a data-driven method. The top-quark mass is obtained from template fits to the ratio of the three-jet to the dijet mass. The three-jet mass is obtained from the three jets assigned to the top quark decay. From these three jets the dijet mass is obtained using the two jets assigned to the W boson decay. The top-quark mass is measured to be 173.72 ± 0.55 (stat.) ± 1.01 (syst.) GeV

    Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors

    No full text
    This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection

    Overview of the JET ITER-like wall divertor

    No full text
    The work presented draws on new analysis of components removed following the second JET ITER-like wall campaign 2013–14 concentrating on the upper inner divertor, inner and outer divertor corners, lifetime issues relating to tungsten coatings on JET carbon fibre composite divertor tiles and dust/particulate generation. The results show that the upper inner divertor remains the region of highest deposition in the JET-ILW. Variations in plasma configurations between the first and second campaign have altered material migration to the corners of the inner and outer divertor. Net deposition is shown to be beneficial in the sense that it reduces W coating erosion, covers small areas of exposed carbon surfaces and even encapsulates particles

    Determining the prediction limits of models and classifiers with applications for disruption prediction in JET

    No full text
    Understanding the many aspects of tokamak physics requires the development of quite sophisticated models. Moreover, in the operation of the devices, prediction of the future evolution of discharges can be of crucial importance, particularly in the case of the prediction of disruptions, which can cause serious damage to various parts of the machine. The determination of the limits of predictability is therefore an important issue for modelling, classifying and forecasting. In all these cases, once a certain level of performance has been reached, the question typically arises as to whether all the information available in the data has been exploited, or whether there are still margins for improvement of the tools being developed. In this paper, a theoretical information approach is proposed to address this issue. The excellent properties of the developed indicator, called the prediction factor (PF), have been proved with the help of a series of numerical tests. Its application to some typical behaviour relating to macroscopic instabilities in tokamaks has shown very positive results. The prediction factor has also been used to assess the performance of disruption predictors running in real time in the JET system, including the one systematically deployed in the feedback loop for mitigation purposes. The main conclusion is that the most advanced predictors basically exploit all the information contained in the locked mode signal on which they are based. Therefore, qualitative improvements in disruption prediction performance in JET would need the processing of additional signals, probably profiles

    Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    No full text
    Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation

    Improved confinement in JET high β plasmas with an ITER-like wall

    No full text

    The upgraded JET toroidal Alfvén eigenmode diagnostic system

    No full text
    The main characteristics of toroidal Alfven eigenmodes (TAEs) have been successfully investigated in JET (Joint European Torus) using the scheme of sweeping-frequency external excitation with tracking of the synchronously-detected resonances. However, due to technical limitations, only modes with low values of the toroidal mode number n ≤7 could be effectively excited and unambiguously identified by the Alfven Eigenmode Active Diagnostic (AEAD) system. This represents a serious restriction because theoretical models indicate that medium-n Alfven eigenmodes (AEs) are the most prone to be destabilized by energetic particles in ignited plasmas and, therefore, reliable measurement of their damping rates remains a relevant issue to properly access their effect in ignited plasmas. For this reason, a major upgrade of the AEAD system has been carried out aiming at providing a state-of-the-art excitation and real-time detection system for the planned DT campaign in JET. This required the development of a new type of radio frequency amplifier and filter, not commercially available, and also a control system. In this paper, details of the concepts that are relevant to understand the operation of the new system in the next experimental campaigns are presented, as are the results of numerical simulations to model its performance

    Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    No full text
    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli's theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth
    corecore