563 research outputs found

    Emergence of helicity +/- 2 modes (gravitons) from qubit models

    Full text link
    The general equivalence principle and the associated diffeomorphism gauge symmetry are regarded as a founding principles of nature. But, one may wonder, can diffeomorphism gauge symmetry emerge as a low energy property of certain topological/quantum order in a qbit model that has no diffeomorphism gauge symmetry? In this paper, we showed that, at least, the linearized diffeomorphism gauge symmetry h_{\mu\nu}\to h_{\mu\nu} +\prt_\mu f_\nu+\prt_\nu f_\mu can indeed emerge from some qbit models (or quantum spin models). Physically, the emergence of the (linearized) diffeomorphism gauge symmetry implies the emergence of gapless helicity +/- 2 excitations (ie the gravitons). In the first qbit model (called the L-type model), we show that helicity +/- 2 gapless excitations appear as the only type of low energy excitations using a reliable semiclassical approach. The dispersion of the gapless helicity +/- 2 is found to be \eps_k \propto k^3. The appearance of the gapless helicity +/- 2 modes suggests that the ground state of the qbit model is a new state of matter. In the second model (called the N-type model) the collective modes are strongly interacting and there is no reliable approach to understand its low energy dynamics. Using a spin-wave/quantum-freeze approach (which is shown to reproduce the correct emergent U(1) gauge theory in a quantum rotor model), we argue that the second model may contain helicity +/- 2 gapless excitations as the only type of low energy excitations with a linear dispersion \om \propto k.Comment: 25 pages, 7 figures, RevTeX

    Beyond spectroscopy. II. Stellar parameters for over twenty million stars in the northern sky from SAGES DR1 and Gaia DR3

    Full text link
    We present precise photometric estimates of stellar parameters, including effective temperature, metallicity, luminosity classification, distance, and stellar age, for nearly 26 million stars using the methodology developed in the first paper of this series, based on the stellar colors from the Stellar Abundances and Galactic Evolution Survey (SAGES) DR1 and Gaia EDR3. The optimal design of stellar-parameter sensitive uvuv filters by SAGES has enabled us to determine photometric-metallicity estimates down to 3.5-3.5, similar to our previous results with the SkyMapper Southern Survey (SMSS), yielding a large sample of over five million metal-poor (MP; [Fe/H]1.0\le -1.0) stars and nearly one million very metal-poor (VMP; [Fe/H]2.0\le -2.0) stars. The typical precision is around 0.10.1 dex for both dwarf and giant stars with [Fe/H]>1.0>-1.0, and 0.15-0.25/0.3-0.4 dex for dwarf/giant stars with [Fe/H]<1.0<-1.0. Using the precise parallax measurements and stellar colors from Gaia, effective temperature, luminosity classification, distance and stellar age are further derived for our sample stars. This huge data set in the Northern sky from SAGES, together with similar data in the Southern sky from SMSS, will greatly advance our understanding of the Milky Way, in particular its formation and evolution.Comment: 14 pages, 14 figures, 3 tables, accepted by ApJ. arXiv admin note: text overlap with arXiv:2104.1415

    HCV 6a Prevalence in Guangdong Province Had the Origin from Vietnam and Recent Dissemination to Other Regions of China: Phylogeographic Analyses

    Get PDF
    Recently in China, HCV 6a infection has shown a fast increase among patients and blood donors, possibly due to IDU linked transmission.We recruited 210 drug users in Shanwei city, Guangdong province. Among them, HCV RNA was detected in 150 (71.4%), both E1 and NS5B genes were sequenced in 136, and 6a genotyped in 70. Of the 6a sequences, most were grouped into three clusters while 23% represent emerging strains. For coalescent analysis, additional 6a sequences were determined among 21 blood donors from Vietnam, 22 donors from 12 provinces of China, and 36 IDUs from Liuzhou City in Guangxi Province. Phylogeographic analyses indicated that Vietnam could be the origin of 6a in China. The Guangxi Province, which borders Vietnam, could be the first region to accept 6a for circulation. Migration from Yunnan, which also borders Vietnam, might be equally important, but it was only detected among IDUs in limited regions. From Guangxi, 6a could have further spread to Guangdong, Yunnan, Hainan, and Hubei provinces. However, evidence showed that only in Guangdong has 6a become a local epidemic, making Guangdong the second source region to disseminate 6a to the other 12 provinces. With a rate of 2.737×10⁻³ (95% CI: 1.792×10⁻³ to 3.745×10⁻³), a Bayesian Skyline Plot was portrayed. It revealed an exponential 6a growth during 1994-1998, while before and after 1994-1998 slow 6a growths were maintained. Concurrently, 1994-1998 corresponded to a period when contaminated blood transfusion was common, which caused many people being infected with HIV and HCV, until the Chinese government outlawed the use of paid blood donations in 1998.With an origin from Vietnam, 6a has become a local epidemic in Guangdong Province, where an increasing prevalence has subsequently led to 6a spread to many other regions of China

    Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation

    Get PDF
    该研究工作是在郑南峰教授的领导下,由校内外、国内外多个课题组共同努力,历时三年完成。郑南峰、傅钢、陈明树等三个课题组紧密协作负责催化剂的合成、表征、性能测试以及催化机理研究;中国科学院物理研究所谷林研究员主要负责纳米颗粒的亚埃级球差校正高分辨透射电子显微研究;加拿大达尔豪斯大学化学系的张鹏教授课题组和台湾同步辐射研究中心李志甫研究员等参与催化剂的同步辐射X-射线吸收光谱研究。 该工作受到了国家自然科学基金委、科技部、厦门大学、固体表面物理化学国家重点实验室、能源材料化学协同创新中心以及醇醚酯化工清洁生产国家工程实验室的资助与支持。Hybrid metal nanoparticles can allow separate reaction steps to occur in close proximity at different metal sites and accelerate catalysis. We synthesized iron-nickel hydroxide–platinum (transition metal-OH-Pt) nanoparticles with diameters below 5 nanometers and showed that they are highly efficient for carbon monoxide (CO) oxidation catalysis at room temperature. We characterized the composition and structure of the transition metal–OH-Pt interface and showed that Ni2+ plays a key role in stabilizing the interface against dehydration. Density functional theory and isotope-labeling experiments revealed that the OH groups at the Fe3+-OH-Pt interfaces readily react with CO adsorbed nearby to directly yield carbon dioxide (CO2) and simultaneously produce coordinatively unsaturated Fe sites for O2 activation. The oxide-supported PtFeNi nanocatalyst rapidly and fully removed CO from humid air without decay in activity for 1 month

    Designing microenvironments for optimal outcomes in tissue engineering and regenerative medicine: From biopolymers to culturing conditions

    Get PDF
    Bone marrow mesenchymal stem cells have been extensively used for tissue engineering and regenerative medicine applications due to their ease of isolation and expansion and their ability to differentiate towards various lineages of mesodermal origin. Despite these properties, their clinical potential is often hampered by the simplicity of the in vitro environment and its inability to resemble the complex in vivo niche. Herein, different microenvironmental cues (e.g. surface topography, substrate stiffness, mechanical stimulation, oxygen tension and co-culture systems) that have been utilised to enhance the therapeutic efficacy of bone marrow mesenchymal stem cells are discussed.The authors would like to acknowledge the following entities for financial support: H2020, Marie Skłodowska-Curie Actions, Innovative Training Networks 2015 Tendon Therapy Train project (Grant No. 676338); Science Foundation Ireland (SFI) / European Regional Development Fund (Grant Number 13/RC/2073); and SFI Career Development Award (Grant Number 15/CDA/3629)

    Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications

    Get PDF
    Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore