494 research outputs found
Bounded Representations of Interval and Proper Interval Graphs
Klavik et al. [arXiv:1207.6960] recently introduced a generalization of
recognition called the bounded representation problem which we study for the
classes of interval and proper interval graphs. The input gives a graph G and
in addition for each vertex v two intervals L_v and R_v called bounds. We ask
whether there exists a bounded representation in which each interval I_v has
its left endpoint in L_v and its right endpoint in R_v. We show that the
problem can be solved in linear time for interval graphs and in quadratic time
for proper interval graphs.
Robert's Theorem states that the classes of proper interval graphs and unit
interval graphs are equal. Surprisingly the bounded representation problem is
polynomially solvable for proper interval graphs and NP-complete for unit
interval graphs [Klav\'{\i}k et al., arxiv:1207.6960]. So unless P = NP, the
proper and unit interval representations behave very differently.
The bounded representation problem belongs to a wider class of restricted
representation problems. These problems are generalizations of the
well-understood recognition problem, and they ask whether there exists a
representation of G satisfying some additional constraints. The bounded
representation problems generalize many of these problems
Atomic Dark Matter
We propose that dark matter is dominantly comprised of atomic bound states.
We build a simple model and map the parameter space that results in the early
universe formation of hydrogen-like dark atoms. We find that atomic dark matter
has interesting implications for cosmology as well as direct detection:
Protohalo formation can be suppressed below for weak scale dark matter due to Ion-Radiation interactions in the
dark sector. Moreover, weak-scale dark atoms can accommodate hyperfine
splittings of order 100 \kev, consistent with the inelastic dark matter
interpretation of the DAMA data while naturally evading direct detection
bounds.Comment: 17 pages, 3 figure
Charged AdS Black Holes and Catastrophic Holography
We compute the properties of a class of charged black holes in anti-de Sitter
space-time, in diverse dimensions. These black holes are solutions of
consistent Einstein-Maxwell truncations of gauged supergravities, which are
shown to arise from the inclusion of rotation in the transverse space. We
uncover rich thermodynamic phase structures for these systems, which display
classic critical phenomena, including structures isomorphic to the van der
Waals-Maxwell liquid-gas system. In that case, the phases are controlled by the
universal `cusp' and `swallowtail' shapes familiar from catastrophe theory. All
of the thermodynamics is consistent with field theory interpretations via
holography, where the dual field theories can sometimes be found on the world
volumes of coincident rotating branes.Comment: 19 pages, revtex, psfig, 6 multicomponent figures, typos, references
and a few remarks have been repaired, and adde
Recommended from our members
Technology and Discourse: A Comparison of Face-to-face and Telephone Employment Interviews
Very little research has investigated the comparability of telephone and face-to-face employment interviews. This exploratory study investigated interviewers' questioning strategies and applicants' causal attributions produced during semi structured telephone and face-to-face graduate recruitment interviews (N=62). A total of 2044 causal attributions were extracted from verbatim transcripts of these 62 interviews. It was predicted that an absence of visual cues would lead applicants to produce, and interviewers to focus on, information that might reduce the comparative anonymity of telephone interviews. Results indicate that applicants produce more personal causal attributions in telephone interviews. Personal attributions are also associated with higher ratings in telephone, but not face-to-face interviews. In face-to-face interviews, applicants who attributed outcomes to more global causes received lower ratings. There was also a non-significant tendency for interviewers to ask more closed questions in telephone interviews. The implications of these findings for research and practice are discussed
Time dependent mean field theory of the superfluid-insulator phase transition
We develop a time-dependent mean field approach, within the time-dependent
variational principle, to describe the Superfluid-Insulator quantum phase
transition. We construct the zero temperature phase diagram both of the
Bose-Hubbard model (BHM), and of a spin-S Heisenberg model (SHM) with the XXZ
anisotropy. The phase diagram of the BHM indicates a phase transition from a
Mott insulator to a compressibile superfluid phase, and shows the expected
lobe-like structure. The SHM phase diagram displays a quantum phase transition
between a paramagnetic and a canted phases showing as well a lobe-like
structure. We show how the BHM and Quantum Phase model (QPM) can be rigorously
derived from the SHM. Based on such results, the phase boundaries of the SHM
are mapped to the BHM ones, while the phase diagram of the QPM is related to
that of the SHM. The QPM's phase diagram obtained through the application of
our approach to the SHM, describes the known onset of the macroscopic phase
coherence from the Coulomb blockade regime for increasing Josephson coupling
constant. The BHM and the QPM phase diagrams are in good agreement with Quantum
Monte Carlo results, and with the third order strong coupling perturbative
expansion.Comment: 15 pages, 8 figures. To be published in Phys. Rev.
An fMRI investigation of the relationship between future imagination and cognitive flexibility
While future imagination is largely considered to be a cognitive process grounded in default mode network activity, studies have shown that future imagination recruits regions in both default mode and frontoparietal control networks. In addition, it has recently been shown that the ability to imagine the future is associated with cognitive flexibility, and that tasks requiring cognitive flexibility result in increased coupling of the default mode network with frontoparietal control and salience networks. In the current study, we investigated the neural correlates underlying the association between cognitive flexibility and future imagination in two ways. First, we experimentally varied the degree of cognitive flexibility required during future imagination by manipulating the disparateness of episodic details contributing to imagined events. To this end, participants generated episodic details (persons, locations, objects) within three social spheres; during fMRI scanning they were presented with sets of three episodic details all taken from the same social sphere (Congruent condition) or different social spheres (Incongruent condition) and required to imagine a future event involving the three details. We predicted that, relative to the Congruent condition, future simulation in the Incongruent condition would be associated with increased activity in regions of the default mode, frontoparietal and salience networks. Second, we hypothesized that individual differences in cognitive flexibility, as measured by performance on the Alternate Uses Task, would correspond to individual differences in the brain regions recruited during future imagination. A task partial least squares (PLS) analysis showed that the Incongruent condition resulted in an increase in activity in regions in salience networks (e.g. the insula) but, contrary to our prediction, reduced activity in many regions of the default mode network (including the hippocampus). A subsequent functional connectivity (within-subject seed PLS) analysis showed that the insula exhibited increased coupling with default mode regions during the Incongruent condition. Finally, a behavioral PLS analysis showed that individual differences in cognitive flexibility were associated with differences in activity in a number of regions from frontoparietal, salience and default-mode networks during both future imagination conditions, further highlighting that the cognitive flexibility underlying future imagination is grounded in the complex interaction of regions in these networks
Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV
Peer reviewe
Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search
Peer reviewe
Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks
Peer reviewe
- …
