1,269 research outputs found

    Metachronous hepatic metastases from gastric carcinoma: a multicentric survey

    Get PDF
    BACKGROUND: The treatment of hepatic metastases from gastric cancer is controversial, due to biologic aggressiveness of the disease. OBJECTIVE: To survey the clinical approach to the subset of atients presenting with metachronous hepatic metastases as sole site of recurrence after curative resection of gastric cancer, focusing on the results achieved by different therapies and to investigate the prognostic factors of major clinical relevance. METHODS: Retrospective multi-center chart review evaluating 73 patients, previously submitted to D >or= 2 gastrectomy for gastric cancer, who developed exclusive hepatic recurrence. Prognostic factors related to the patient, to the gastric malignancy and its treatment, and to the metastatic disease and its therapy were evaluated. RESULTS: Forty-five patients received supportive care, 17 were submitted to chemotherapy, and 11 to hepatic resection. Survival was independently influenced by the variables T (p=0.019), N (p=0.05) and G (p=0.018) of the gastric primary and by the therapeutic approach to the metastases (p<0.005). In particular, T4 gastric cancer, presence of lymph-node metastases and G3 tumor displayed a negative prognostic value. Therapeutic approach to the metastases was the principal prognostic variable: 1, 2, and 3 years survival rates were 22.2%, 4.4% and 2.2%, respectively, for patients without specific treatment; 44.9%, 12.8% and 6.4% after chemotherapy (p=0.08) and 80.8%, 30.3% and 20.2% after surgical resection (p<0.001). CONCLUSIONS: Our data suggest some clinical criteria that may facilitate selection of therapy for patients with hepatic recurrence after primary gastric cancer resection. The best survival rates are associated with surgical treatment, which should be chosen whenever possible

    Preliminary definitions for the sonographic features of synovitis in children

    Get PDF
    Objectives Musculoskeletal ultrasonography (US) has the potential to be an important tool in the assessment of disease activity in childhood arthritides. To assess pathology, clear definitions for synovitis need to be developed first. The aim of this study was to develop and validate these definitions through an international consensus process. Methods The decision on which US techniques to use, the components to be included in the definitions as well as the final wording were developed by 31 ultrasound experts in a consensus process. A Likert scale of 1-5 with 1 indicating complete disagreement and 5 complete agreement was used. A minimum of 80% of the experts scoring 4 or 5 was required for final approval. The definitions were then validated on 120 standardized US images of the wrist, MCP and tibiotalar joints displaying various degrees of synovitis at various ages. Results B-Mode and Doppler should be used for assessing synovitis in children. A US definition of the various components (i.e. synovial hypertrophy, effusion and Doppler signal within the synovium) was developed. The definition was validated on still images with a median of 89% (range 80-100) of participants scoring it as 4 or 5 on a Likert scale. Conclusions US definitions of synovitis and its elementary components covering the entire pediatric age range were successfully developed through a Delphi process and validated in a web-based still images exercise. These results provide the basis for the standardized US assessment of synovitis in clinical practice and research

    Nonlinear phononics: A new ultrafast route to lattice control

    Full text link
    To date, two types of coupling between electromagnetic radiation and a crystal lattice have been identified experimentally. One is direct, for infrared (IR)-active vibrations that carry an electric dipole. The second is indirect, it occurs through intermediate excitation of the electronic system via electron-phonon coupling, as in stimulated Raman scattering. Nearly 40 years ago, proposals were made of a third path, referred to as ionic Raman scattering (IRS). It was posited that excitation of an IR-active phonon could serve as the intermediate state for a Raman scattering process relying on lattice anharmonicity as opposed to electron phonon interaction. In this paper, we report an experimental demonstration of ionic Raman scattering and show that this mechanism is relevant to optical control in solids. The key insight is that a rectified phonon field can exert a directional force onto the crystal, inducing an abrupt displacement of the atoms from the equilibrium positions that could not be achieved through excitation of an IR-active vibration alone, for which the force is oscillatory. IRS opens up a new direction for the coherent control of solids in their electronic ground state, different from approaches that rely on electronic excitations.Comment: 10 manuscript pages, 3 figure

    MicroRNA132 Modulates Short-Term Synaptic Plasticity but Not Basal Release Probability in Hippocampal Neurons

    Get PDF
    MicroRNAs play important regulatory roles in a broad range of cellular processes including neuronal morphology and long-term synaptic plasticity. MicroRNA-132 (miR132) is a CREB-regulated miRNA that is induced by neuronal activity and neurotrophins, and plays a role in regulating neuronal morphology and cellular excitability. Little is known about the effects of miR132 expression on synaptic function. Here we show that overexpression of miR132 increases the paired-pulse ratio and decreases synaptic depression in cultured mouse hippocampal neurons without affecting the initial probability of neurotransmitter release, the calcium sensitivity of release, the amplitude of excitatory postsynaptic currents or the size of the readily releasable pool of synaptic vesicles. These findings are the first to demonstrate that microRNAs can regulate short-term plasticity in neurons

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore