198 research outputs found
Sputter Deposition of Semiconductor Superlattices for Thermoelectric Applications
Theoretical dramatic improvement of the thermoelectric properties of materials by using quantum confinement in novel semiconductor nanostructures has lead to considerable interest in the thermoelectric community. Therefore, we are exploring the critical materials issues for fabrication of quantum confined structures by magnetron sputtering in the lead telluride and bismuth telluride families of materials. We have synthesized modulated structures from thermoelectric materials with bilayer periods of as little as 3.2 nm and shown that they are stable at deposition temperatures high enough to grow quality films. Issues critical to high quality film growth have been investigated such as nucleation and growth conditions and their effect on crystal orientation and growth morphology. These investigations show that nucleating the film at a temperature below the growth temperature of optimum electronic properties produces high quality films. Our work with sputter deposition, which is inherently a high rate deposition process, builds the technological base necessary to develop economical production of these advanced materials. High deposition rate is critical since, even if efficiencies comparable with CFC based refrigeration systems can be achieved, large quantities of quantum confined materials will be necessary for cost-competitive uses
The Burden of COVID-19 on Caregivers of Children with Suspected Genetic Conditions: A Therapeutic Odyssey
Aims: Children with disabilities and rare or undiagnosed conditions and their families have faced numerous hardships of living during the COVID-19 pandemic. For those with undiagnosed conditions, the diagnostic odyssey can be long, expensive, and marked by uncertainty. We, therefore, sought to understand whether and how COVID-19 impacted the trajectory of children’s care. Methods: We conducted semi-structured qualitative interviews with 25 caregivers who, prior to the pandemic, were on a diagnostic odyssey for their children. Results: Most caregivers did not report any interruptions to their child’s diagnostic odyssey. The greatest impact was access to therapy services, including the suspension or loss of their child’s in-person therapeutic care and difficulties with virtual therapies. This therapy gap caused caregivers to fear that their children were not making progress. Conclusion: Although much has been written about the challenges of diagnostic odysseys for children and their families, this study illustrates the importance of expanding the focus of these studies to include therapeutic odysseys. Because therapeutic odysseys continue regardless of whether diagnoses are made, future research should investigate how to support caregivers through children’s therapies within and outside of the COVID-19 context
Cavity-enhanced direct frequency comb spectroscopy
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral
bandwidth, high spectral resolution, precise frequency calibration, and
ultrahigh detection sensitivity, all in one experimental platform based on an
optical frequency comb interacting with a high-finesse optical cavity. Precise
control of the optical frequency comb allows highly efficient, coherent
coupling of individual comb components with corresponding resonant modes of the
high-finesse cavity. The long cavity lifetime dramatically enhances the
effective interaction between the light field and intracavity matter,
increasing the sensitivity for measurement of optical losses by a factor that
is on the order of the cavity finesse. The use of low-dispersion mirrors
permits almost the entire spectral bandwidth of the frequency comb to be
employed for detection, covering a range of ~10% of the actual optical
frequency. The light transmitted from the cavity is spectrally resolved to
provide a multitude of detection channels with spectral resolutions ranging
from a several gigahertz to hundreds of kilohertz. In this review we will
discuss the principle of cavity-enhanced direct frequency comb spectroscopy and
the various implementations of such systems. In particular, we discuss several
types of UV, optical, and IR frequency comb sources and optical cavity designs
that can be used for specific spectroscopic applications. We present several
cavity-comb coupling methods to take advantage of the broad spectral bandwidth
and narrow spectral components of a frequency comb. Finally, we present a
series of experimental measurements on trace gas detections, human breath
analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure
H-ATLAS/GAMA: magnification bias tomography. Astrophysical constraints above ~1 arcmin
An unambiguous manifestation of the magnification bias is the cross-correlation between two source samples with non-overlapping redshift distributions. In this work we measure and study the cross-correlation signal between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2<z<0.8, and a background sample of H-ATLAS galaxies with photometric redshifts gsim1.2. It constitutes a substantial improvement over the cross-correlation measurements made by Gonzalez-Nuevo et al. (2014) with updated catalogues and wider area (with S/Ngsim 5 below 10 arcmin and reaching S/N~ 20 below 30 arcsec). The better statistics allow us to split the sample in different redshift bins and to perform a tomographic analysis (with S/Ngsim 3 below 10 arcmin and reaching S/N~ 15 below 30 arcsec). Moreover, we implement a halo model to extract astrophysical information about the background galaxies and the deflectors that are producing the lensing link between the foreground (lenses) and background (sources) samples. In the case of the sources, we find typical mass values in agreement with previous studies: a minimum halo mass to host a central galaxy, Mmin~ 1012.26 M⊙, and a pivot halo mass to have at least one sub-halo satellite, M1~ 1012.84 M⊙. However, the lenses are massive galaxies or even galaxy groups/clusters, with minimum mass of Mminlens~ 1013.06 M⊙. Above a mass of M1lens~ 1014.57 M⊙ they contain at least one additional satellite galaxy which contributes to the lensing effect. The tomographic analysis shows that, while M1lens is almost redshift independent, there is a clear evolution of increase Mminlens with redshift in agreement with theoretical estimations. Finally, the halo modeling allows us to identify a strong lensing contribution to the cross-correlation for angular scales below 30 arcsec. This interpretation is supported by the results of basic but effective simulations
Question prompt lists and caregiver question asking in pediatric specialty appointments: A randomized controlled trial
Objective: Question prompt lists (QPLs) have been effective at increasing patient involvement and question asking in medical appointments, which is critical for shared decision making. We investigated whether pre-visit preparation (PVP), including a QPL, would increase question asking among caregivers of pediatric patients with undiagnosed, suspected genetic conditions. Methods: Caregivers were randomized to receive the PVP before their appointment (n = 59) or not (control, n = 53). Appointments were audio-recorded. Transcripts were analyzed to determine questions asked. Results: Caregivers in the PVP group asked more questions (MeanPVP = 4.36, SDPVP = 4.66 vs. Meancontrol = 2.83, SDcontrol = 3.03, p = 0.045), including QPL questions (MeanPVP = 1.05, SDPVP = 1.39 vs. Meancontrol = 0.36, SDcontrol = 0.81, p = 0.002). Caregivers whose child had insurance other than Medicaid in the PVP group asked more total and QPL questions than their counterparts in the control group (ps = 0.005 and 0.002); there was no intervention effect among caregivers of children with Medicaid or no insurance (ps = 0.775 and 0.166). Conclusion: The PVP increased question asking but worked less effectively among traditionally underserved groups. Additional interventions, including provider-focused efforts, may be needed to promote engagement of underserved patients. Practice implications: Patient/family-focused interventions may not be beneficial for all populations. Providers should be aware of potential implicit and explicit biases and encourage question asking to promote patient/family engagement
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
The Future Landscape of High-Redshift Galaxy Cluster Science
Large scale structure and cosmolog
- …