74 research outputs found

    Examining the effectiveness of different dental recall strategies on maintenance of optimum oral health: the INTERVAL dental recalls randomised controlled trial

    Get PDF
    Objective To compare the clinical effectiveness of different frequencies of dental recall over a four-year period. Design A multi-centre, parallel-group, randomised controlled trial with blinded clinical outcome assessment. Participants were randomised to receive a dental check-up at six-monthly, 24-monthly or risk-based recall intervals. A two-strata trial design was used, with participants randomised within the 24-month stratum if the recruiting dentist considered them clinically suitable. Participants ineligible for 24-month recall were randomised to a risk-based or six-month recall interval. Setting UK primary dental care. Participants Practices providing NHS care and adults who had received regular dental check-ups. Main outcome measures The percentage of sites with gingival bleeding on probing, oral health-related quality of life (OHRQoL), cost-effectiveness. Results In total, 2,372 participants were recruited from 51 dental practices. Of those, 648 were eligible for the 24-month recall stratum and 1,724 participants were ineligible. There was no evidence of a significant difference in the mean percentage of sites with gingival bleeding on probing between intervention arms in any comparison. For those eligible for 24-month recall stratum: the 24-month versus six-month group had an adjusted mean difference of -0.91%, 95% CI (-5.02%, 3.20%); the 24-month group versus risk-based group had an adjusted mean difference of 0.07%, 95% CI (-3.99%, 4.12%). For the overall sample, the risk-based versus six-month adjusted mean difference was 0.78%, 95% CI (-1.17%, 2.72%). There was no evidence of a difference in OHRQoL (0-56 scale, higher score for poorer OHRQoL) between intervention arms in any comparison. For the overall sample, the risk-based versus six-month effect size was -0.35, 95% CI (-1.02, 0.32). There was no evidence of a clinically meaningful difference between the groups in any comparison in either eligibility stratum for any of the secondary clinical or patient-reported outcomes. Conclusion Over a four-year period, we found no evidence of a difference in oral health for participants allocated to a six-month or a risk-based recall interval, nor between a 24-month, six-month or risk-based recall interval for participants eligible for a 24-month recall. However, patients greatly value and are willing to pay for frequent dental check-ups

    A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions

    Get PDF
    All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies

    The elite's collective subjectivities of the history of ethnic politics in Malaysia

    Get PDF
    Malaysia is one of the multi-ethnic, multi-cultural and multi-religious countries in Southeast Asia. Due to the pluralistic nature of Malaysia, it has a political structure based on ethnic politics. The ethnic preferential policies affected most domains of this country. The objective of this article is to examine the origin and background of ethnic politics in Malaysia. Findings of this study indicate that, ethnic politics originated during the British colonial period, it became a tool used by the Barisan Nasional for the legitimacy of regime. Moreover, ethnic politics in Malaysia today is intertwined with religion. Besides, there is the dilemma of the choice between the interest of certain ethnic group and national interests. However, with the opposition coalition Pakatan Harapan won the election in 9th May, UMNO-led BN lost power and interrupted its 61 years control, which leaves us an interesting topic to think about the future of Malaysian ethnic politics

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
    • 

    corecore