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Abstract This paper reviews recent progress toward understanding the dynamics of the

middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure

in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and

mesosphere, is a crucial region which influences tropospheric weather and climate.
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Enhancing the understanding of middle atmosphere dynamics requires improved measure-

ment of the propagation and breaking of planetary and gravitywaves originating in the lowest

levels of the atmosphere. Inter-comparison studies have shown large discrepancies between

observations and models, especially during unresolved disturbances such as sudden strato-

spheric warmings for which model accuracy is poorer due to a lack of observational con-

straints. Correctly predicting the variability of the middle atmosphere can lead to

improvements in tropospheric weather forecasts on timescales of weeks to season. The

ARISE project integrates different station networks providing observations from ground to

the lower thermosphere, including the infrasound system developed for the Comprehensive

Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric

Composition Change, complementary meteor radars, wind radiometers, ionospheric soun-

ders and satellites. This paper presents several examples which show how multi-instrument

observations can provide a better description of the vertical dynamics structure of the middle

atmosphere, especially during large disturbances such as gravity waves activity and strato-

spheric warming events. The paper then demonstrates the interest of ARISE data in data

assimilation forweather forecasting and re-analyzes the determination of dynamics evolution

with climate change and the monitoring of atmospheric extreme events which have an

atmospheric signature, such as thunderstorms or volcanic eruptions.

Keywords Atmospheric dynamics � Middle atmosphere � Infrasound � Gravity
waves � Volcanoes � Atmospheric disturbances � Extreme events

Abbreviations
ALOMAR Andøya Space Centre, Norway

AMSU Advanced Microwave Sounding Unit

ARISE Atmospheric dynamics Research InfraStructure in Europe

CMIP Coupled Model Inter-comparison Project

CTBT Comprehensive nuclear-Test-Ban Treaty

ECMWF European Centre for Medium-range Weather Forecasts

GCM General Circulation Model

GPS RO GPS Radio Occultation

GW Gravity Wave

HIRDLS High Resolution Dynamics Limb Sounder

HWM Horizontal Wind Model

IAVWOPSG International Airways Volcano Watch Operation Group

IMS Infrasound Monitoring System

LIDAR Light Detection and Ranging

MA Middle Atmosphere

MERRA Modern Era Retrospective analysis for Research and Applications

MLT Mesosphere Lower Thermosphere

MPI-ESM-LR Max Planck Institute-Earth System Model-Low Resolution

MSIS Mass Spectrometer and Incoherent Scatter

MST Mesosphere, Stratosphere, Thermosphere

NDACC Network for the Detection of Atmospheric Composition Change

NWP Numerical Weather Prediction

OHP Observatory of Haute-Provence, France

OPAR Observatory of Atmospheric Physics of Reunion Island

PW Planetary Wave
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SSW Sudden Stratospheric Warming

SVERT Sakhalin Volcanic Eruption Response Team

TRMM Tropical Rainfall Measurement Mission

VAAC Volcanic Ash Advisory Centre

WIRA Wind Radiometer

WRF Weather Research and Forecasting

1 Introduction

The atmosphere is a dynamic medium with variability on time and space with scales ranging

from thousands of kilometers to tens of meters and extending in the different atmospheric

layers from the troposphere up to the lower thermosphere. It includes the middle atmosphere

(MA) which extends from the tropopause (10–15 km) to the turbopause (100–105 km)

comprising the stratosphere and mesosphere. Atmospheric dynamics is driven by atmo-

sphericwaves such as gravitywaves (GW) at periods larger than theBrunt-Väisälä frequency,

produced in the troposphere by flow over topography, convection related to thunderstorms,

cold fronts and jet imbalance. At planetary scales, it includes Rossby waves (or planetary

waves PW)which owe their existence to the equator to pole gradient of potential vorticity and

are produced by flow over orography and by contrasts in temperature between the land and

ocean. The upward propagation and breaking of GWs and PWs control to a large extent the

circulation system in the MA and play an essential role in local weather and climate.

Since the pioneering studies of Baldwin and Dunkerton (2001); Baldwin et al. 2003

there has been renewed focus on the ways in which variability in the MA on all timescales

can lead to shifts and changes to the tropospheric jet stream and hence to changes in

surface weather and climate (Shaw and Shepherd 2008a). A key example of the variability

of the MA, critical to the link between the troposphere and stratosphere, is the sudden

stratospheric warming events (SSW) during which normally winter westerly winds in the

stratosphere are temporarily reversed due to momentum transfer from PW breaking.

During these events, PW breaking leads to a rapid deceleration of the normally westerly

stratospheric jet. In recent years, there has been a renewed focus on studying and under-

standing the dynamics of SSW events and their evolution both dynamically and climato-

logically (e.g., Charlton and Polvani 2007). The review of Tripathi et al. (2014) showed

that correctly predicting the evolution of extreme events in the stratosphere such as

stratospheric sudden warnings can lead to improvements in tropospheric weather forecasts

on weekly timescales. Similarly, Sigmond et al. (2013) showed that seasonal forecast skill

(2–3 months ahead) is significantly enhanced following SSW events in a dynamical sea-

sonal forecast system including a good representation of the stratosphere. On longer

timescales, future changes in stratospheric climate could play a significant role in deter-

mining changes in surface climate over the coming century (Manzini et al. 2014).

GWs transfer energy and momentum from one part of the atmosphere to another. The

deposition of momentum is associated with wave dissipation or breaking which exerts a

drag force on the mean flow and significantly alters the dynamical structure of the

atmosphere (Dunkerton 1978; Lindzen 1981; Holton 1983; Holton et al. 1995; Butch-

art 2014). GW sources and their contribution to atmospheric circulation and variability in

the MA were reviewed by Fritts and Alexander (2003). Although the scales of the indi-

vidual waves are small, GWs have collectively important global-scale effects as they drive
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the global summer-to-winter pole circulation, in addition to the PW action, as shown in

Fig. 1.

GW geographical distribution reflects their different origin. Mountain GW activity is

observed by satellite mainly in Southern Andes, over Rockies in Northern America, in

Antarctica and in Northern Europe (Wu et al. 2006; Hoffmann et al. 2014). Tropical and

equatorial convection forms large GW sources over continents where thunderstorms are

quasi-continuously observed by Tropical Rainfall Measurement Mission (TRMM) satel-

lites (Christian et al. 2003). GWs propagate upward with growing amplitude because of the

decrease in the atmospheric density where the altitude increases in order to satisfy the wave

energy conservation. GWs break when the phase velocity is in the opposite direction to the

winds. A significant part of their energy is transmitted to the ionosphere where they

contribute to the traveling disturbances frequently observed in the ionosphere (Vincent

2009; Lastovicka 2006). The cumulative effects of GW activity may disturb the general

atmospheric circulation (Holton et al. 1995; Shaw and Shepherd 2008b). A strong air

descent observed by satellite in Northern Polar Regions by Hauchecorne et al. (2007) was

explained by a pure atmospheric dynamical phenomenon induced by the GW effects. At

larger scales, it was recently shown that PW could favor particular regional weather

extremes (Screen and Simmonds 2014).

At shorter scales, the impact of infrasoundwaves on the atmosphere is expected to be local

or regional. However, quasi-continuous infrasound sources like ocean swells affect a large

surface over oceans. They are currently observed in seismic and atmospheric recordings

(Ardhuin andHerbers 2013; Landes et al. 2014). Rind (1977) estimated that the dissipation of

infrasound produced by ocean swells in the Atlantic Ocean could produce significant heating

rates in the 110–140 km altitude range. Similar results were found by Hickey et al. (2001).

Additional significant infrasound sources are tropical thunderstorms and winds over

Fig. 1 Schematic diagram of the atmospheric dynamic processes in the Earth’s atmosphere. Gravity and
planetary waves contribute to the middle atmospheric transport as illustrated by arrows
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topography (e.g., Le Pichon et al. 2010). Thanks to ongoing development of the international

monitoring system (IMS) dedicated to the verification of the Comprehensive Nuclear-Test-

Ban Treaty (CTBT) enormous progress was made in the knowledge of infrasound sources

(e.g., Campus andChristie 2010). Infrasoundwaves propagate in the atmospheric wave guide

between ground and the temperature increase in the stratosphere and lower thermosphere

(Francis 1975; Blanc 1985). They are strongly affected by the stratospheric winds variability

and fluctuations fromGWs in thewind profiles (Le Pichon et al. 2008; Kulichkov et al. 2010).

It was suggested in the pioneering work of Donn and Rind (1971), Rind et al. (1973) and Rind

and Donn (1975) that infrasound from well-identified repetitive sources could be used for

remote determination of the upper-atmosphere wind speeds. IMS stations, quasi-continu-

ously detecting infrasound from volcanoes, are well-adapted to these studies. Systematic

differences between simulations and observations of the infrasound produced by the Lopevi

volcano, detected in the New Caledonia IS22 station, were used to correct winds in the upper

stratosphere and mesosphere (Le Pichon et al. 2005a, b), and new methods were further

developed for infrasound inversions (Millet et al. 2007; Drob et al. 2010; Lalande et al. 2012;

Assink et al. 2014a). Ocean swell at the origin of microbaroms detected at most infrasound

stations could also be used as a natural and continuous source for passive acoustic tomog-

raphy of the stratosphere and lower mesosphere in a global way (Le Pichon et al. 2006). This

methodology will be reinforced thanks to recent improvements in ocean swell source char-

acterization (Ardhuin et al. 2015). Recent studies focus on the use of infrasonic ambient noise

to probe the atmosphere during SSW events (e.g., Evers and Siegmund 2009; Assink et al.

2014b; Smets and Evers 2014). In the study of Smets et al. (2016), a novel method for the

evaluation of middle atmospheric weather forecasts using infrasound from volcanoes is

introduced.

There is now an increasing interest to extend the altitude range considered in the atmo-

spheric dynamics up to the mesosphere and lower thermosphere (MLT). This region of low

temperature is characterized by a summer-to-winter temperature gradient, resulting from

adiabatic cooling and warming associated with the GW-driven atmospheric circulation. The

MLT dynamics is described by Smith (2012) and Vincent (2015). Recent studies show that

the coupling between stratosphere, MLT and thermosphere is more important than expected

and that it should be considered in models (Drob et al. 2008). Lidar observations at middle

latitude showed that awarm signal in the uppermesosphere could indicate precursor effects in

SSW events (Angot et al. 2012). At higher altitudes, strong ionospheric disturbances fol-

lowing SSW were observed by the Jicamarca radar at the geomagnetic equator and GPS

stations (Goncharenko et al. 2013). Such processes need to be characterized and integrated in

the future ionospheric models used for space weather studies.

The representation of these complex wave systems and associated large-scale distur-

bances in weather and climate models is still in its infancy. As shown by Charlton-Perez

et al. (2013), only around half of the climate models used for the most recent fifth Coupled

Model Inter-comparison Project (CMIP5) fully represented the stratosphere with conse-

quent biases in the representation of stratospheric climate and variability for those that did

not. One reason for the lack of representation of the MA in numerical models is the

relatively limited current observational possibilities in this region.

Because of the coarse temporal and spatial resolution of most weather and climate

models, a portion of the GWs cannot be resolved directly and is parameterized (Alexander

et al. 2010; Lott and Guez 2013). This parameterization suffers from a lack of observa-

tional constraints due to the limited availability of GW observations. For instance, the link

between the generation of GWs by tropical convection and regular oscillations of strato-

spheric and mesospheric winds such as the quasi-biannual oscillation well established in
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theory and represented in some models has only limited observational constraints. Many

parameters of the GW parameterizations and particularly GW source parameters are

uncertain due to a lack of long-term high-resolution observations. Most small-scale GWs

are not resolved by typical climate models and only partially resolved by weather fore-

casting models.

At climatological timescales, assessing trends in the MA is difficult due to the lack of

long-duration calibrated observations as shown, for example, by the discussions sur-

rounding estimates of temperature trends from satellite instruments by Thompson et al.

(2012). Trends in temperature evolution in the different atmospheric layers are valuable

indicators for climate change studies. The long-term evolution of the atmospheric distur-

bances (cyclones, severe weather, gravity and planetary waves, stratospheric warming

events) also needs to be determined to better understand and predict their evolution with

climate change, to improve climate models and weather forecasts.

For all these timescales, improved and expanded routine measurements would provide

significant opportunities for enhanced understanding of the climate and variability of the

MA and MLT. Given the importance of their impact on weather and climate at the surface,

this represents critical needs for many sectors of industry and society.

The ARISE project concept consists in integrating complementary international atmo-

spheric observation networks including infrasound network, lidar network, different radars

systems, observatories and satellites to provide a more comprehensive and coherent MA

picture. The objective is to recover the vertical structure of the unresolved atmospheric

motions and disturbances with unprecedented spatial–temporal resolution and study their

impact on weather and climate (Blanc et al. 2015). The considered timescales for an

accurate description of these phenomena range from seconds for atmospheric extreme

events to minutes or hours for GWs, days for PWs, seasons and up to tens of years for long-

term mean trend studies. The observations cover areas extending over Europe and outlying

regions, including polar and equatorial regions which have very different climate. The

altitude range covers the troposphere, stratosphere, mesosphere, lower thermosphere and

ionosphere. Data will be collected over the long term to monitor atmospheric extreme

events and atmospheric parameters related to climate change. One of the main applications

is the use of these data to improve the weather forecasting models up to timescales of weeks.

ARISE also represents a relevant network for the remote observation of atmospheric

extreme events including meteorological events and large-scale disturbances such as sudden

stratospheric warmings. Volcano monitoring by infrasound technology presents a strong

interest for aviation safety in case of eruption of distant non-instrumented volcanoes.

The objective of this paper is to show how the ARISE project could provide new data

sets, linked to modeling, to improve the representation of the middle atmospheric

dynamics. After a short description of the ARISE objectives and network, the paper

presents multi-technology observations performed to quantify the uncertainties in the

weather predictions models. It then describes the potential of infrasound remote obser-

vations for the characterization and monitoring of extreme events such as meteors, thun-

derstorms or volcanoes. The paper then highlights the interest of the multi-technology

observations to represent gravity waves and stratospheric warming events in the MA. The

last part is dedicated to show the interest of ARISE data for future assimilation in weather

forecasting and climate models. Perspectives for next project steps are presented in the last

section.

This paper mainly reviews the ARISE results obtained in the first step of the project (EU

FP7 program). Following these results, ARISE work is continuing in the framework of the

EU H2020 program.
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2 ARISE Concept

2.1 ARISE Objectives

The objectives of the ARISE project are to provide 3D atmospheric observations in the

different atmospheric layers to improve the modeling of the general global atmospheric

circulation and develop related products and services.

The ARISE objectives focus on the main following topics:

• improving the representation of GWs and PWs in stratosphere resolving climate models

to estimate the impact of stratospheric climate forcing on the troposphere and

developing methods to parameterize GWs in the perspective of future assimilation in

weather forecasting models,

• determining the evolution of the atmospheric disturbances in relation to climate change

by providing observations of climate-related phenomena over large time periods, in

order to better understand the processes involved and to characterize their evolution in

relation to climate change,

• developing tools for future applications based on the quasi-real-time description of an

atmospheric extreme event for civil applications. An example is remote volcano

monitoring for civil aviation safety.

2.2 ARISE Network

The ARISE project integrates different atmospheric observation networks and satellite

observations to recover the vertical structure of the unresolved atmospheric motions and

disturbances with unprecedented spatial–temporal resolution and coverage.

The ARISE station network (Fig. 2) includes complementary infrastructures listed in

this article.

The IMS infrasound network developed for the verification of the CTBT (http://www.

ctbto.org) providing continuous infrasound measurements is unique by its global and

homogeneous coverage as well as its data quality. It is larger and much more sensitive than

Fig. 2 The ARISE observation network
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any previously operated infrasound network. Once complete, the network will include 60

stations uniformly distributed across the globe. Today, more than 80% of this network is

operational. The IMS infrasound sensors are microbarometers designed for the detection of

atmospheric pressure fluctuations in the 0.02–4 Hz frequency range. They are grouped in

mini-array stations including at least four sensors at distances of 1–3 km able to detect and

characterize low coherent infrasound signals within the background noise. All technical

aspects of infrasound monitoring related to sensors, stations and data processing have been

redeveloped for CTBT verification (Christie and Campus 2010; Brachet et al. 2010). In the

last decade, detection bulletins determined from near-real-time analysis have been pro-

duced and correlated with observations of natural or man-made atmospheric sources, such

as exploding meteoroids, volcanic eruptions, severe weather, hurricanes, earthquakes and

ocean swelling (Le Pichon et al. 2010). Infrasound technology also detects and charac-

terizes waves at much lower frequencies such as GWs, tides and PWs (Blanc et al. 2010;

Marty et al. 2013). This provides a unique broadband observation set of all atmospheric

disturbances, leading to a new description of atmospheric dynamics and extreme events

occurring in different parts of the world. The IMS network is completed by national

infrasound stations which form a dense network in Europe.

The Network for the Detection of Atmospheric Composition Change (NDACC, http://

ndacc-lidar.org/) provides lidar measurements of the stratospheric temperature and wind.

This international network was initially set up in 1991 for ozone monitoring after the ozone

hole discovery and the launch of the UARS satellite. The measurement of stratospheric and

mesospheric temperature using Rayleigh lidar technique was initiated 30 years ago at the

Haute-Provence Observatory (OHP) by Hauchecorne and Chanin (1980). Monochromatic

laser pulses are sent vertically into the atmosphere, and a temporal analysis of the

backscattered light provides information about the vertical structure and composition of the

atmosphere. Rayleigh lidars are well adapted to the study of PWs, GWs and tides in the

upper stratosphere and mesosphere as well as their interaction to induce mesospheric

inversions. The Haute-Provence lidar database is the longest temperature series and

allowed one of the first detections of the cooling of the upper stratosphere and mesosphere

(Ramaswamy et al. 2001). Now it is a key instrument to ensure inter-satellite adjustment

like AMSU series (Keckhut et al. 2011). A Rayleigh–Doppler wind lidar was developed by

Chanin et al. (1989) to measure the horizontal wind in the stratosphere and in the upper

troposphere. Such a lidar has been used at the Haute-Provence Observatory to study GW

characteristics and climatology and their interaction with the mean circulation (Hertzog

et al. 2001). A similar wind lidar is recently operating at Reunion Island at the Maı̈do

observatory (Baray et al. 2013).

Mesospheric observations by OH spectrometers providing relevant information of wave

activity in the mesosphere (Pilger et al. 2013) are integrated in the project. They are

completed by airglow imagers in development for the ARISE multi-technology sites.

Stratospheric wind observations are performed by a microwave Doppler spectro-

radiometer (WIRA, Rüfenacht et al. 2014). This instrument well complements the other

observations. An instrument was installed at OHP during the 2012–2013 campaign. It then

moved to Reunion Island for forthcoming ARISE observations.

Furthermore, other technologies associated with ARISE or identified to be of relevance

to the project include new lidar systems (ALOMAR), MST radars (MAARSY) and meteor

radars (SKiYMET) as new observation techniques highlighting a novel possibility to

observe high-altitude dynamics. Ionospheric Doppler sounding observations are used for

studying the coupling between the atmosphere and the ionosphere. EISCAT (European
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Incoherent Scatter Scientific Association) radar measurements complement ionospheric

observations.

ARISE also includes multi-technology sites at Haute-Provence, France, Andøya Space

Center, Norway, and La Reunion Island, France, which are relevant ARISE reference

stations.

The first ARISE multi-technology site at the Observatoire de Haute-Provence (OHP,

43.93�N, 5.71�E, France) where a NDACC lidar is in operation provided high-quality data

during the first 1-year observation campaign. A four-element infrasound array of * 3-km

aperture was installed during the campaign. It becomes a permanent infrasound station.

A WIRA microwave radiometer completed the observations during the campaign.

The Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in Norway

(Andøya Space Center, 69.3�N, 16.0�E) is one of the key facilities for ARISE network

optimization identified as a future multi-technology site. It integrates airglow detections,

radar facilities and a IMS infrasound station, which is less than 100 km away from the

observatory. The use of radar observations in ARISE is of high interest and potential,

especially when considering Radar information on wind and temperature for sparsely

covered altitude regions like the mesosphere and thermosphere above 70 km altitude.

While some of the globally distributed radar instrumentation is mainly used for wind

profiling the lower troposphere (\ 10–15 km, e.g., MST Radar), other instruments (e.g.,

Meteor radar) especially focus on estimating mesospheric wind and temperature. Powerful

MST radars can be used to derive mesospheric wind information.

Another observatory is Esrange (67.88�N, 21.10�E) including the ESRAD MST radar

operated in Northern Sweden. A facility such as the Swedish infrasound network reinforces

the interest for the study of the dynamics of the atmosphere.

The Reunion Island lidar was developed in the framework of NDSC/NDACC (Network

for the Detection of Stratospheric Change/Network for the Detection of Atmospheric

Composition Change). In 2012, a new observatory was commissioned in Maı̈do (OPAR

21�S, 55�E) at 2200 m above sea level. It hosts various instruments for wind and tem-

perature measurements, including Rayleigh lidar, Doppler lidar and Modem radiosonde,

and the WIRA wind radiometer was installed in 2013.

3 Multi-technology Observations and Model Assessment

3.1 Comparison of Lidar and Infrasound Data with the ECMWF Model

One of the main objectives of the OHP campaign (July 2012–July 2013) was to investigate

the synergy between different collocated techniques for the characterization of specific

dynamics events. The SSW occurring in January 2013 during the campaign offered a good

opportunity to test this synergy.

Comparing the European Centre for Medium-Range Weather Forecasts (ECMWF,

http://www.ecmwf.int/) wind and temperature models, lidar and wind radiometer obser-

vations with collocated infrasound measurements provided an estimate of the model

uncertainties in the stratosphere and mesosphere. Infrasound microbaroms in the Atlantic

Ocean are dominant and permanent sources of infrasound signals in the 0.1–0.3 Hz fre-

quency band, resulting from the nonlinear interaction of ocean waves. They are quasi-

continuously detected during normal winter conditions when the infrasound propagation is

driven by the prevailing westerly stratospheric winds (Landes et al. 2014). Infrasound
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observations provide additional continuous, directional and integrated information about

the structure of the stratospheric waveguide from the source to the station.

Figure 3 presents on the same time basis the temporal evolution of lidar and infrasound

observations compared to the ECMWF operational deterministic high-resolution analysis

consisting of 91 levels in the vertical (further referred to as L91). The systematic com-

parisons between lidar and model revealed differences as large as 20 K. On average, the

model temperature appears to be overestimated by * 5 K in the stratosphere and under-

estimated by * 10 K in the mesosphere. Microbarom detections (black) are superimposed

to the onto the color-coded effective sound speed ratio Veff-ratio above the OHP site, defined

as the ratio between the maximum of the along-path wind plus the adiabatic sound speed at

30–60 km altitude and the sound speed at the ground level, derived from the ECMWF

model. This parameter can be used as a criterion to characterize the infrasound propagation

(Kulichkov 2010). Red regions indicate favorable stratospheric propagation conditions,

while blue to white colors indicate that stratospheric propagation is unlikely.

Microbarom sources are predicted using a source model and operational ECMWF ocean

wave models. The back azimuths of predicted microbarom sources with respect to the OHP

array are superimposed in green. As expected, improved detection capability occurs

downwind during the period from October 2012 to May 2013 when stratospheric winds

control the eastward microbarom propagation to the station. Good agreement between the

observed and predicted azimuths is found in a range of * 20�. Deviations from this trend

are either related to short timescale variability of the atmosphere (e.g., large-scale PWs,

stratospheric warming effects) or can be explained by unresolved changes in the nature of

the microbarom sources. The effect of the major January 2013 SSW can be seen in the

strong decrease in the number of microbarom detections from the north Atlantic repre-

senting the effect of stratospheric wind inversion during this event.

Fig. 3 Multi-technology synthetic view of the OHP measurement campaign showing from top to bottom:
lidar temperature observations, temperature difference between L91 ECMWF and lidar observations,
infrasound microbaroms from North Atlantic. Detected (black dots) and predicted signals (green regions) are
superimposed on Veff-ratio computed from vertical profiles above OHP in the full range of azimuths
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3.2 ECMWF Evaluation Using ARISE Multi-technology Observations

3.2.1 Evaluation Using Lidar and Wind Radiometer Observations

Following these results, the OHP NDACC lidar station was considered for evaluating

numerical weather prediction (NWP) such as ECMWF analyses at 40 km and above where

very few observations are assimilated. Generally, ECMWF and lidar are in good agreement

up to the stratopause but differences may reach an average of - 20 K in the mesosphere

above 65 km. This is expected since very little data are assimilated above 50 km altitude.

The physics of the model characterizing the upper atmosphere, that is driven from below,

still needs improvements to better represent the observations. The vertical resolution of the

ECMWF model was increased in 2013 from 91 levels (L91) to 137 levels (L137), and

comparison also included the NASA modern era retrospective analysis for research and

applications (MERRA) model.

Figure 4 (top) presents examples of the statistical distributions of the differences

between the ECMWF temperature models and lidar observations during the OHP mea-

surement campaign in January and June 2013 (Le Pichon et al. 2015). Generally, ECMWF,

NASA MERRA and lidar observations are in agreement up to the stratopause with a small,

but systematic positive difference of * 3 K at * 35 km altitude. The median of the

differences increases with altitude, predominantly above the stratopause region. The lar-

gest deviations noted in winter correspond to the time of the major SSW that occurred early

in January 2013. After the vernal equinox, the median and 95% intervals reduce by about a

factor of two due to the lack of stratospheric and mesospheric variability in this season.

The horizontal wind of the MA is another fundamental atmospheric parameter to rep-

resent the atmospheric dynamics. However, there are no wind data assimilated in models

above the top of radiosoundings (around 30 km). The wind is indirectly derived from

temperature and pressure fields solving the fundamental equations of the atmospheric

dynamics.

Comparisons between ECMWF and WIRA observations (examples of January and

April 2013 in Fig. 4, middle) show that measurements and model values are in good

agreement between 30 and 60 km. This is expected as the model winds are determined

from thermal wind balances implicitly solved in the global circulation models (GCM). The

median of the difference, especially above 60 km, falls outside of the instrumental error in

green and thus can be considered statistically significant. The mean flow of the zonal wind

appears to be overestimated up to about 40 m/s in the mesopause. As for the temperature,

larger differences are noted during the winter months.

On longer timescales (October 2012–July 2013), the standard deviation of the mean

difference in temperature exceeds 5 K between 40 and 60 km altitude. Significant dif-

ferences in the zonal wind are also observed (Fig. 4, bottom). The largest deviations appear

in winter when the variability from large-scale PWs dominates over the general circulation

and SSW occurs (Le Pichon et al. 2015).

The current ARISE data set can be used as a benchmark to assess future upgrades in

assimilation systems and as a comparator for model forecasts. As the ARISE network data

coverage increases spatially and the number and diversity of remote sounding techniques

increases, additional and more large-scale comparison will be possible.
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3.2.2 Evaluation Using Infrasound Inversions

Observations at the beginning of the 2000s showed that infrasound from quasi-continuous

volcanic eruptions can be used as a passive remote sensing technique to probe the upper

atmosphere (Le Pichon et al. 2005a, b). Different studies have then focused on the

development of inverse methods to estimate upper atmospheric wind parameters and

determine the uncertainties in the wind profiles provided by the models (Drob et al. 2010;

Lalande et al. 2012; Chunchuzov et al. 2015).

The near-continuous activity of Mt. Etna, the favorable locations of the available

infrasound arrays and the good detection capability at the far-field infrasound array make

Mt. Etna a good candidate for passive acoustic remote sensing and general circulation

Fig. 4 Distribution of the monthly difference between ECMWF (L91 and L137) and MERRA temperature
models at 0-h UTC and nightly averaged lidar measurements versus altitude at OHP in January and June
2013 (top) and between wind model at 12-h UTC and daily averaged WIRA measurements versus altitude in
January and April 2013 (middle). Blue lines: standard error of the mean. Green dashed lines: instrumental
error bars. The differences are significant when the blue lines fall outside of the green dashed lines. Purple
and pink regions: 66 and 95% confidence intervals of the difference profiles. (Bottom) Comparison between
model and observation time series of wind and temperatures at the altitude range 60–70 km. (Adapted Le
Pichon et al. 2015)
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model validation studies of the stratosphere. Other sources such as ocean swell are also

considered (Garcés et al. 2004).

Using the trace velocity of Etna eruptions observed at the IMS IS48 station in Tunisia, a

first-order update of the effective sound speed in the MA has been obtained by applying a

Bayesian inversion formalism. Instead of a more rigorous inversion procedure that

involves propagation paths, travel time and bearing deviations, we seek the ensemble of

effective sound speed updates that would likely explain the observed spread in trace

velocities. Figure 5 shows examples of inversions during the summer (June 29, 2008) and

during the equinox period (October 2, 2008). While the a priori and a posteriori model

distributions essentially overlap for the summer case, the results for October 2, 2008, show

that the effective sound speed is underestimated by at least 25 m/s at 50 km altitude. The

dashed red lines indicate the estimated intrinsic uncertainty in the a priori model due to

non-modeled small-scale structure estimated from the GW activity and represented by the

solid red line. The cyan and red lines represent the maximum likelihood and a priori

models, respectively. While a first-order agreement is generally found between wind model

and the observations in summer, significant discrepancies during the equinox periods and

some anomalous wintertime periods during the occurrence of major SSW events were

reported (Assink et al. 2014a). The example of October 2, 2008 illustrates the effective

sound speed underestimation by the model by at least 25 m/s at 50 km altitude near the

equinox period. These values are in agreement with the statistical approach using of

ensembles of realistically perturbed analyses for infrasound propagation modeling. The

spread in the ECMWF Ensemble of Data Assimilations shows that the yearly mean

effective sound speed can reach variations up to 8 m/s in the stratosphere, exceeding

occasionally 25 m/s (Smets et al. 2015).

This method was extended over several months. Results reported at the left (bottom) of

Fig. 5 suggest that the effective sound speed is overpredicted in summer and underesti-

mated during equinoxes by models (Assink et al. 2014a).

Fig. 5 Inversions using Etna volcano infrasound. (Left) Comparison between Etna trace velocity data
(black) in Tunisia compared to ray theory predictions performed with ECMWF models (red). (Right)
Examples of effective sound speed inversions for June 29, 2008, and October 2, 2008. The a priori model is
represented by the red curve; the dashed lines indicate the intrinsic uncertainty in the model due to non-
modeled small-scale structure. The dark patched areas correspond to the a posteriori model distribution.
While the a priori and a posteriori model distributions correspond well in the summer case, the fall equinox
case shows that the effective sound speed is underestimated by about 30 m/s at 50 km. (Left bottom)
differences between models and inversions from April to October 2008. (From Assink et al. 2014a)
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3.2.3 Planetary Wave Spectrum from Lidar Observations and Models

Lidar observations provide PW information through the periodograms as shown in Fig. 6.

Observations were compared with the spectral amplitude of ECMWF, NASA MERRA re-

analyses and the climate Max Planck Institute-Earth System (MPI-ESM-LR) models.

A reasonable agreement in spectral amplitude is found down to 15–20 days for all

models, showing that the annual and semiannual cycles are reasonably well resolved by the

models. However, the variability at shorter timescales is lacking in both weather and

climate models. We note that the measurement periodograms contain more narrow peaks

compared to the model periodograms.

The MPI-ESM-LR periodogram appears to be smoother and the spectral tail has a

steeper slope for periods smaller than 5 days, compared to the ECMWF/MERRA peri-

odograms. The lower level of variability found in the free running MPI-ESM-LR model

can partly be explained by its coarser resolution and the lack of data being assimilated.

These results are in line with a recent study by Hoppel et al. (2013) who showed that

assimilation of microwave imager/sounder data can provide reliable large-scale constraints

throughout the mesosphere for operational high-altitude analysis.

3.2.4 Planetary Waves and Tides from Infrasound Technology

The infrasound sensors can detect low-pressure atmospheric waves in a very large band-

width including infrasound, GWs, tides and PWs (Marty et al. 2010).

The spectrum of the atmospheric pressure of Fig. 7 (top) covers the period range from

1 s to 7 days. The slope change in the spectrum at the Brunt-Väisälä period indicates the

difference between the infrasound (acoustic) and GW domains which are subject to dif-

ferent processes. The solar diurnal and semidiurnal tidal oscillations in surface pressure are

well observed as shown in Fig. 7 spectrum. Barometric global tidal amplitudes are needed

for the calibration of the ECMWF model (Ray and Ponte 2003). The IMS infrasound

network could provide a new global data set to complete such observations.

The periodogram, obtained using 14 years of data recorded at the IS26 station, displays

the PW activity at periods of several days. There is no apparent trend in the PW activity.

The data series could be too small or trend effects too weak or masked by other processes

for such observation. However, strong differences appear from one year to another in the

PW structure.

Another way to characterize PWs is to analyze their effect on microbaroms measured in

the infrasound stations. The ocean swell which forms a quasi-permanent infrasound noise

Fig. 6 Comparison between lidar (blue) and model (red) periodograms at 1 hPa (* 47 km) over OHP.
a ECMWF (2003–2013). b MERRA (2003–2013). c MPI-ESM-LR (1991–2005). Each line corresponds to
one ensemble member. (From Le Pichon et al. 2015)
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observed everywhere in the world is the driving force materializing their activity; infra-

sound waves generated at the ocean interface are propagating over thousands of kilometers

in the atmospheric wave guide between ground, stratosphere and thermosphere. Their

amplitude is modulated by the PWs with a maximum of activity in winter (Blanc et al.

2010).

Figure 7 (bottom) shows several years of PWs observed in this way. Activity is larger in

winter, and shows fluctuations in amplitude and azimuth in the range 70�–120� at time-

scales of weeks. The structure of these fluctuations is also variable from one year to

another.

These infrasound data can be interesting for the long-term characterization of tides, for

the study of satellite long time series. Tides induce bias in satellite observations such as

advanced microwave sounding unit (AMSU) series (Keckhut et al. 2015). Ground-based

Fig. 7 (Top) Example of spectrum of the waves and wavelet analysis for 14-year data set recorded at the
I26DE infrasound station in the Bavarian forest, Germany. The station detects infrasound, GWs, tides and
planetary waves. (Middle) Wavelet periodogram and time series averaged on 2–20 days showing the
planetary wave activity. (Bottom) Planetary wave effect on the microbarom amplitude and azimuth
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instruments are needed to calibrate successive satellite instruments when overlap periods

are missing (Keckhut et al. 2011).

4 Extreme Event Monitoring

The infrasound technology is well adapted to the characterization and monitoring of

extreme events since the long-range infrasound propagation allows detections at very large

distances from the infrasound sources. Several models using complementary approaches

were developed to represent the infrasound propagation in the atmospheric wave channel

between the ground and the temperature increases in the stratosphere and lower thermo-

sphere (Drob et al. 2003; Gainville et al. 2010). Propagation models are needed to dif-

ferentiate the source origin from the propagation effects in the detected infrasound signals.

The stratospheric winds drive the infrasound propagation which mainly follows the zonal

stratospheric wind. This effect is well represented at a first order. However, variations at

shorter periods of time are more difficult to be represented as they are poorly integrated in

the atmospheric models. Atmospheric disturbances at the origin of atmospheric model

uncertainties (see Sect. 3) also contribute to the uncertainties in the infrasound propagation

models. Other uncertainties are related to nonlinearity in the propagation.

This section presents examples of infrasound observations related to extreme events

produced by meteorological activity, earthquakes and volcanoes which induce atmospheric

effects detected by the ARISE network. It explains how propagation effects can be inte-

grated to predict the detection capability of a specific infrasound network. It also proposes

to use observations of quasi-permanent infrasound sources such as volcanoes as a monitor

of disturbances such as GWs.

4.1 Assessment of the Infrasound Technology Monitoring Capability

4.1.1 Simulations

Because of its network coverage, time resolution and continuity in the observations, the

infrasound technology is largely used to study all high-frequency sources which are at the

origin of the extreme events. The large source number, routinely observed by the IMS

network, demonstrates the high network efficiency (Le Pichon et al. 2010). However, the

effect of the infrasound propagation needs to be determined to predict the detection effi-

ciency of a specified infrasound network under any atmospheric conditions. Methods to

determine the detection capability were developed for routine data analysis and interpre-

tation (Le Pichon et al. 2008; Green and Bowers 2010). They are also used to assess the

network performance in different configurations and promote its potential benefits for

monitoring natural hazards.

Simulations were performed to determine the monitoring capability of any infrasound

network under any atmospheric conditions. The methodology consists in computing the

infrasound signal amplitude at any location and further evaluates whether the signal is

detectable above the noise level at the receivers in specified atmospheric conditions (Le

Pichon et al. 2008). Today, numerical modeling techniques provide a basis to better

understand the role of different factors describing the source and the atmosphere that affect

propagation predictions. In particular, more realistic model predictions have been further

enhanced by the addition of perturbation terms, such as GWs, which are excluded from the
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current atmospheric specifications (e.g., Hedlin and Drob 2014). In order to quantify the

infrasound network performance in higher spatiotemporal resolution, a frequency-depen-

dent semiempirical attenuation relationship derived from massive range-independent

parabolic equation simulations has been developed (e.g., Le Pichon et al. 2012). Coupled

with realistic station noise and analysis products from ECMWF, simulations predict the

minimum detectable amplitude at a reference distance of 1 km away from the source

(Tailpied et al. 2013).

The detection capability methodology was calibrated using different events including

the 2013 Chelyabinsk meteorite which generated a large airburst with an equivalent yield

of 500 kT of TNT equivalent, detected at global scale. Figure 8 displays the global

detection capability map and the infrasound signals recorded at several stations. It is the

most energetic event recorded by the infrasound component of the CTBT-IMS network,

globally detected by 20 out of 42 operational stations (Le Pichon et al. 2013; Pilger et al.

2015).

Meteor entries will be included in the ARISE database as these observations provide

new benchmark for future studies on exploding fireballs and help advance the development

of monitoring procedures to identify potentially dangerous exploding near-Earth objects.

4.1.2 Calibration Sources: Events in the Industrial Belt

Another calibration infrasound source is human activity. The European infrasound network

in the Arctic has become an exceptional observatory with its recent expansion, its synergy

with collocated seismic stations and proximity of quarries (Gibbons et al. 2015). Explosive

blasting is used almost globally as a means of extracting rock and minerals from quarries.

Automatic or semiautomatic classification of infrasound from such explosions has long

been deemed essential. Infrasound is an excellent discriminant for determining if a small

seismic event originates from the surface or near surface rather than at a significant depth.

The observation of infrasound signals that are clearly associated with a set of seismic

signals can assist greatly in event classification and/or discrimination. The seismic

recording of industrial blasts tells us exactly where an explosion took place and when it

occurred (so-called ground truth information). Many quarries blast at least once per week,

Fig. 8 (Left) Infrasound signals produced by the 2013 Chelyabinsk meteorite at 20 IMS stations using the
mean back azimuth, UTC time and normalized amplitude. Stations are sorted by propagation range (in
degrees) from the source. PMCC detections of the first and second arrivals are indicated by rectangles with
color-coded back azimuths (from Le Pichon et al. 2013). The name and location of these stations are shown
in the map (right) where the color represents the detection capability of the network (from Pilger et al. 2015)
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and sometimes as frequently as several times per day, and so provide us with vast numbers

of events with which we can validate and calibrate our models of atmospheric specification

for the prediction of infrasound arrivals. For ARISE industrial belt explosions, the primary

parameters are the origin time, the latitude, longitude, depth and seismic magnitude. Such

events are used as repetitive sources for calibrations or remote infrasound sounding (e.g.,

Smets et al. 2015). Other possible natural sources are repetitive volcanic eruptions.

4.2 Meteorology Related Extreme Events

4.2.1 Polar Lows

Cyclones and hurricanes are frequently observed by the infrasound stations (Stopa et al.

2012). Intense mesoscale maritime cyclones, called ‘‘polar lows’’ (Heinemann and Claud

1997; Claud et al. 2004), occasionally occur during cold season months mainly over

Greenland and Norwegian seas at the start of the season and over the Barents sea further

into the season (Rojo et al. 2015). These events are produced by the advection of very cold

air over relatively warm water and are characterized by their small-scale extent (diameter

less than 1000 km and thickness of about 1–5 km) and short life span (a few hours to a few

days). The sudden development of this phenomenon, together with the sparsity of con-

ventional measurements in the genesis and development areas, results in a low forecasting

skill (Noer et al. 2011). Therefore, polar lows represent a hazard for all maritime and

coastal activities (fishing, oil drilling, etc.) and population.

Examples of infrasound measurements in Norway and Svalbard from turbulent con-

vection produced by a polar low outbreak have already been reported in the Norwegian/

Barents Sea (Orbaek and Naustvik 1995). Systematic long-range infrasound measurements

of polar low- in high-latitude regions are taken in the framework of ARISE. These analyses

will use the recently installed IMS infrasound station IS37 and other infrasound arrays in

Scandinavia which are ideally located to characterize the source mechanism involved in

the generation of the signals. Compared with satellite observations (infrared imagery,

microwave observations, etc.), the added value of infrasound data for polar low monitoring

and short-term forecasting is investigated.

4.2.2 Lightning and Sprites

Thunderstorms are also an important focus of ARISE. They produce lightning in the

troposphere and other high-energy transient events such as sprites, jets and elves, called

transient luminous events (TLEs). They are the manifestation of an intense transient

coupling between the troposphere and the lower thermosphere.

4.2.2.1 Infrasound Used for Lightning Source Description Thunder studies (measure-

ments and theories) have been carried out since the 1960s. Recent observations show that

infrasound from lightning can be measured within 50 km around the infrasound station.

However, the increase in the number of lightning flashes inside the thundercloud indicates

a hail-producing and strong convective thunderstorm. The monitoring of such intra-cloud

activity has an important societal impact. If cloud-to-ground lightning flashes monitoring is

possible with electric field measurements, at a global scale from ground [e.g., the world-

wide lightning location network (WWLLN) or the Vaisala global lightning data set

(GLD360)] or from space with lightning imagers on board geostationary satellites, the
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measurement of intra-cloud flashes on a continental scale is more difficult because it

requires too many stations (i.e., lightning mapping array). Infrasound observations provide

some lightning characteristics (Farges 2009). Recent studies have shown that the 3D

geometry of intra-cloud discharges can be reconstructed using thunder measurements by a

small-aperture (25–50 m) array of microphones (Arechiga et al. 2014; Gallin 2014). An

example of infrasound inversion, providing the origin of the infrasound sources inside the

lightning structure, is shown in Fig. 9 (Gallin et al. 2016). The good agreement between

the infrasound observations and the observations of the lightning mapping array validated

the infrasound inversions. Such infrasound mini-array station is able to monitor an area of

at least 20 km radius. Infrasound measurements are an alternative to electromagnetic

measurement or complementary methods. It provides additional information to improve

knowledge about the source mechanism involved in the sound generation. Such 3D

measurements in the tropics, e.g., in Ivory Coast, will be very useful when the future

lightning imagers will be operational (2020 for the European Meteosat Third-Generation

(MTG) satellites).

4.2.2.2 Transient Luminous Events Large thunderstorm systems are able to produce

high-energy transient events such as transient luminous events (TLE) or terrestrial gamma-

ray flashes (TGF) which were both discovered in the 1990s (Sentman and Wescott 1993;

Fig. 9 3D structure of a single lightning from infrasound inversions compared with interferometry
electromagnetic observations. The flash occurred on October 26, 2012, at 20:35:00 UTC. Gray dots:
lightning mapping array detections, red squares: reconstructed acoustic detections and blue symbols: strokes
from raw detections provided by the European Cooperation for Lightning Detection (EUCLID) operational
lightning location network (Gallin et al. 2016). This method also allowed retrieving infrasound origin inside
the sprite structures up in the stratosphere and mesosphere up to 100 km altitude. (Farges and Blanc 2010)
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Fishman et al. 1994). Among all kinds of TLEs, sprites are triggered by positive lightning

discharges; they are usually composed of a cluster of vertical columns which form carrot-

or column-like features above thunderstorm clouds at 50–90 km altitudes. Sprite structures

are typically characterized by diameters ranging from a few tens to a few hundreds of

meters (Stenbaek-Nielsen et al. 2007; Neubert et al. 2008).

Satellites are well adapted to the detection of these events (Blanc 2010). However,

observations are limited in time. Ground-based cameras are limited in coverage. Infra-

sound waves produced by sprites are detected at distances from 300 to 1000 km. They

can be identified thanks to their frequency chirp shape, low frequencies being observed

before high frequencies due to propagation effects (Liszka 2004; Farges et al. 2005; Da

Silva and Pasko 2014). More recently, Farges and Blanc (2010) showed that the direct

measurements of the sprite azimuth and elevation angle together with the origin parent

lightning time allow retrieving the location of the emission areas inside the sprite

structures up to altitudes of 100 km. The method was the same as the method used for

lightning analysis (Fig. 9). These sprite events are characterized by an inverted-chirp

infrasonic signature with high frequencies arriving before low frequencies. This is

characteristic of direct observations at close range (\ 150 km) from the source (Fig. 10).

The smaller structures at lower altitudes radiate higher infrasonic frequencies that arrive

first at the observational point on the ground, while the low-frequency components are

delayed because they originate at lower air densities at higher altitudes. The strong

absorption of high-frequency infrasonic components at high altitudes may also contribute

to formation of the inverted chirp signals at close range (de Larquier and Pasko 2010).

Recent ARISE observations (Sindelarova et al. 2015) during an intense thunderstorm

report signals with similar duration and frequency dispersion. The characteristics of these

events differ from lightning, characterized by a shorter duration and the lack of fre-

quency dispersion, and are similar to sprites signals observed by Farges and Blanc (2010)

as shown in Fig. 10. These observations could confirm the possibility of sprite moni-

toring using this technology.

Fig. 10 Examples of sprite infrasound observed at close range from the sprites on September 9, 2005, in
France by Farges and Blanc (2010) (left) and on July 09, 2011, by Sindelarova et al. (2015) (right)
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Infrasound is an innovative technique for monitoring continuously the infrasound

signals produced by lightning and TLEs in tropical regions where there are no ground-

based current observations. They will be very useful for the validation of observation

from space of future space mission as TARANIS (Blanc et al. 2007; Lefeuvre et al.

2008), ASIM (Neubert et al. 2009) and associated studies (Füllekrug et al. 2013).

ARISE will provide a unique database and will contribute to their monitoring in the

longer term.

4.3 Earthquakes Effects in the Atmosphere

4.3.1 Earthquakes: An Extended Infrasound Source

Earthquakes can radiate infrasound, both at the epicenter by direct shaking of the ground

(primary infrasound) or from secondary sources that radiate infrasound as a consequence of

being shaken by seismic waves (secondary infrasound). Infrasound produced by the strong

earthquake (magnitude MI 8.1) which occurred in mountain areas of western China on

November 14, 2001, was detected up to 1800 km from the epicenter for more than 1 h.

Using a precise determination of the arrival times and azimuths of the infrasonic waves and

an appropriate velocity model in the atmosphere, the radiating zone in mountain areas was

reconstructed (Le Pichon et al. 2003).

The high station density available within ARISE provides a good description of the

infrasound origin for earthquakes with lower magnitudes. The recent seismic sequence

occurring in Northern Italy in May 2012 was observed at distance of 300 km. Infrasound

from the Ml = 5.9 main shock of May 20, 2012, is considered as a reference event in

ARISE. The infrasound radiation area has been evaluated from infrasound array obser-

vations (corrected for wind effect on propagation). Unlike most previous studies, the

modeled area of maximum infrasound radiation appears to mimic an extended flat area

(plain of Po River) with no significant contributions from nearby mountain ranges

(Marchetti et al. 2016a). The shake map of the earthquake and the map of reported

acoustic boom are in good agreement with the modeled area of infrasound radiation,

suggesting how the transition of seismic waves into acoustic atmospheric waves is

efficiently exciting infrasound recorded at far distances from the source (Fig. 11). This is

particularly useful to improve earthquake monitoring and understanding especially in

poorly instrumented areas.

Underwater earthquakes can also be detected by infrasound stations thanks to anoma-

lous transparency of the sea surface for infrasound in the frequency range from 1 to 5 Hz

(Evers et al. 2014).
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4.3.2 Earthquake Infrasound in the Ionosphere

During an earthquake, the vertical displacement of the ground, either near the epicenter or

due to Rayleigh waves, induces upward propagating waves in the atmosphere which can be

Fig. 11 ARISE infrasound observations for the May 20, 2012, Ferrara earthquake (epicenter
44.8886792�N, 11.066887�E). Modeled infrasound radiation area a for the main May 20, 2012, event
obtained by combining differences in expected and observed back azimuth and travel times for all the
infrasound detections of the earthquake. b Location (white circles) and density map of infrasonic sources
based on ray tracing. c Distribution of earthquake booms felt in northern Italy (contour lines) and shake map
(colored map). Contour lines represent the percentage of felt boom within the total number of reports. In all
subplots, position of the earthquake epicenter (white star) and of the CHA array (white triangles) is shown as
well as national border (green line) coastline (white line) and the main rivers (yellow lines). (Redrawn from
Marchetti et al. 2016a)
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observed up to the ionosphere. The amplitude of earth displacement of Rayleigh waves on

the ground is about few mm. This oscillation is strongly amplified toward the ionosphere

because of the exponential decrease in the density with height, reaching several tens to

100 m. Signals can be detected in the ionosphere by HF sounding or VHF radars (Artru

et al. 2001, 2004; Occhipinti et al. 2010).

Such ionospheric train of large amplitude infrasound wave packets was observed by a

multi-point continuous Doppler sounding system in the ionosphere over the Czech

Republic and is represented in Fig. 12. This technology consists in measuring the Doppler

effect Df, which determines the vertical velocity of the reflection point of electromagnetic

HF wave emitted from the ground and its counterpart reflected by the ionosphere. It was

shown that the observed wave packets originated from vertical motion of ground surface

that was caused by arrival of seismic waves generated by the strong Tohoku earthquake on

March 11, 2011, with the epicenter * 9000 km away from the Czech Republic. Letters A

to E mark the ionospheric disturbances caused by seismic wave packets A to E. The first

three infrasound wave packets that were generated by P, S and SS seismic waves are

marked by A, B and C, respectively. The cross-correlation coefficients between iono-

spheric and ground measurements were higher than 0.9 (up to 0.98). The observed time

delay of * 9 min between the record of seismic wave packets on the ground and iono-

spheric response at * 210 km corresponded well with the calculated time for infrasound

propagation. The individual wave packets were related to different types of seismic waves,

starting from P waves. The majority of previous reports of similar measurements at

comparable distances from epicenter reported an ionospheric response only to Rayleigh

waves, exceptionally to S waves.

Fig. 12 (Top) Doppler shift spectrogram recorded in Prague, Czech Republic, at * 9000 km from the
epicenter of the Tohoku earthquake on March 11, 2011, from 06:00 UT to 07:10 and to 06:05 to 06:30 UT
(zoom). The five different sounding paths are shifted by 4 Hz to be differentiated. The color indicates the
common logarithm of power spectral intensity of the received sounding radio waves in arbitrary units.
(Bottom) Corresponding seismic signal. (Adapted from Chum et al. 2012a)
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It was also demonstrated by comparing the value of vertical velocity of the ground

motion with the value of Doppler shift that the usually used simple assumption of mirror-

like reflection cannot be used to determine the oscillation velocities of air particles since it

provides unrealistically large values, inconsistent with energy conservation even for

lossless infrasound propagation of a plane wave. It was shown that it is necessary to

consider air (plasma) compression owing to the sound wave and the electron density

gradient. The integration of phase path along the sounding radio wave, used in some

previous studies modeling the value of Doppler shift, was, however, avoided, and a useful

approximation that includes air (plasma) compression and electron density gradient was

derived to calculate the air oscillation velocities after the observed Doppler shift directly.

The measured values of air particle oscillation velocities are in reasonable agreement with

the anticipated values obtained by simple models for infrasound wave attenuation (Chum

et al. 2012a).

The measurements of the extreme events in the ionosphere determine the contribution

of the atmospheric disturbances to the ionospheric dynamics. These effects can be sig-

nificant in case of repetitive or long-duration sources such as thunderstorms in the tropical

regions, mountain waves or ocean swell. The evaluation of these effects is an objective of

the ARISE project.

4.4 Volcano Long-Range Monitoring

4.4.1 Volcano Monitoring Using Infrasound Observations

Infrasound is an efficient monitoring system for explosive volcanoes. Short-range obser-

vations (\ 10 s km) can be used to reconstruct in detail the eruptive chronology and are

currently used to provide near-real-time notification of ongoing activity to civil protection

authorities (Ulivieri et al. 2013). At larger source-to-receiver distances (hundreds km),

infrasound observations showed to somehow match with the reported height of the eruptive

column (e.g., Dabrowa et al. 2011) and in some specific cases infrasound could efficiently

reconstruct the eruptive chronology for non-monitored volcanoes (e.g., Matoza et al.

2011a). This suggests that infrasound observations, especially when combined with net-

work sensitivity analyses (Tailpied et al. 2013), represent a significant tool for a future

global volcano monitoring.

Figure 13 presents an example of eruption chronology that can be inferred from remote

infrasound observations (640 km) from the Sarychev Peak (Kuril Islands). A good

Fig. 13 Chronology of coherent infrasonic signals compared to the eruption chronology inferred from
satellite data by SVERT. Times of arrivals are corrected back to an inferred origin time assuming a celerity
of 0.33 km/s. Black horizontal bars above plot represent beginning and end times of coherent signal packets.
Gray bars represent explosion onset times ± 15 min inferred from satellite data by SVERT. Vertical extent
of each gray bar is scaled relative to the maximum plume altitude inferred by SVERT clouds. (Matoza et al.
2011a)
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correlation between the explosion origin times inferred by infrasound data and those

inferred by satellite data is found. Moreover, it appears that infrasound data can construct

the eruption chronology with greater temporal resolution than is possible with satellite data

alone.

Satellite imagery technique provides relevant information on ash plume dispersion

triggered by strong eruptions. However, cloud cover can hide eruption plumes and

therefore strongly limit the capability of this technique. The cloud coverage over one active

volcanic zone in Southeast Asia often exceeds 0.8 during several months. Infrasound

observations can efficiently complete satellite detection of hazardous volcanic activity

(Prata 2009) leading to a more efficient mitigation of the risk volcanic ash encounters. The

different episodes of eruptions are currently analyzed using infrasound recordings while

they are not fully detected by satellites.

The efficiency of this technology for long-range monitoring was demonstrated in 2010

by the detection of the Eyjafjallajökull volcano eruption (Iceland) by 14 atmospheric

infrasound sensor arrays at ranges between 1700 and 3700 km (Matoza et al. 2011b). More

recently, long-lasting acoustic signal, concurrent with major stratospheric ash injection of

the 2014 eruption of Kelud volcano (Indonesia), was recorded by infrasound arrays up to

11,000 km away. A volcanic episode, not detected by satellites, indicated a ‘‘bottom-up’’

eruption trigger that could have been induced by magma mixing (Caudron et al. 2015).

ARISE is a key infrastructure to provide novel valuable information to the Volcanic Ash

Advisory Centres (VAAC) of the International Civil Aviation Organisation for its poten-

tials on remote infrasound monitoring of eruptive volcanoes (IAVWOPSG 2013, 2014).

ARISE aims to provide notifications of ongoing distant volcanic eruptions following

prototype systems developed locally for Etna volcano (Ulivieri et al. 2013).

Particular interest is thus devoted to ash-rich eruptions, which can inject large ash

amounts into the atmosphere, posing threats to aviation. Previous studies showed a general

agreement between the acoustic power and plume height for high-energy Plinian or sub-

Plinian events (Fee et al. 2010). However, a clear relationship is still missing especially for

lower-energy eruptions (Marchetti et al. 2016b).

Volcanic eruptions are typically characterized by a varying eruptive style through time

going from single explosions of short duration to longer-lasting sustained emission.

Despite efficiently radiating infrasonic waves into the atmosphere, the effects in terms of

atmospheric ash injection are extremely different and this should be considered when

notification of volcanic activity with infrasound is delivered. Within ARISE, such a

problem has been analyzed in detail based on eruptive activity at Etna volcano. Lava

fountains, which are able to inject ash into the atmosphere, are typically preceded by

discrete Strombolian explosions which, despite efficiently radiating infrasound, have a

limited impact on atmospheric ash. Figure 14 shows the infrasound record of a lava

fountain episode at Etna volcano which occurred on March 16, 2013, and was recorded at

three infrasound arrays at distances from 5 to 1080 km. The Lava Fountain started at 17:54

UTC, when the automatic notification based on local array observation was delivered

(Ulivieri et al. 2013) and atmospheric ash injection did actually occur, but was preceded by

several hours of sustained explosive activity very well detected also at large source-to-

receiver distances as shown in the top of Fig. 14.

The infrasound notification at Etna volcano is based on an infrasound parameter (IP)

(Ulivieri et al. 2013) which depends on the infrasound excess pressure and the rate of

occurrence of infrasound detections. It increases for both larger pressure values and higher

detection rates. The work initiated in ARISE clearly shows that such a transition can be

efficiently identified with infrasound observations, even at distances of several hundreds of
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km, thus improving significantly the possibility to identify ash-rich eruptions. In the

specific case of Etna volcano, where discrete Strombolian explosions precede the lava

fountain and reflect a transition in the two-phase flow regime of gas within the liquid

magma (Ulivieri et al. 2013), long-range infrasound appears able to identify the lower-

amplitude precursory phase. Despite considering a flight time of approximately 30 min,

notification can be delivered before the proper event occurrence. Out of 23 Lava Fountains

episodes recorded in 2013 notification could be delivered successfully for * 35% of the

events (Marchetti et al. 2016b). Such a result could be improved considering multiple

arrays at various back azimuth which could reduce the effect of seasonal ducting of

infrasonic waves and/or increasing the array sensitivity.

The ARISE inter-technology approach will assess the detection probability of active

volcanic zones of specific interest for the civil aviation security, depending on the eruptive

styles, propagation and could cover conditions, throughout the year. Over the long term,

Fig. 14 (Bottom) Infrasonic record of the March 16, 2013, lava fountain from Etna at ETN array (* 5 km
from the source) at AMT array (* 630 km from the source) and at GRY array (* 1080 km from the
source). (Top) Infrasound detections and infrasound parameter (IP) derived following the procedure
described by Ulivieri et al. (2013) at Etna (a) and AMT (b). The red line represents the onset of the proper
lava fountain (17:54 UTC)
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ARISE proposes to cover the existing gap between the ground-based geophysical obser-

vations, extremely reliable but unfortunately available for a limited number of active

volcanoes worldwide, and space-borne observations, which often are limited by a lack of

temporal resolution and observation constraints.

4.4.2 Eruption Characterization

The waveforms from volcano eruptions provide indications about the source processes as

they differ significantly for different volcano types producing, for example, Strombolian or

vulcanian explosions. The energy of explosive eruptions is based on the amount of ejected

material and plume height (Marchetti et al. 2013). The infrasound observations could then

help to characterize the eruption source term which strongly controls the ash plume dis-

persion in the atmosphere and is needed for modeling (Bonadonna et al. 2012) especially

for remote volcanic eruptions. The physical conditions at the eruptive vent are difficult to

estimate, especially when volcanoes are not closely monitored by on-site instruments.

The 2010 eruption of volcano Eyjafjallajökull in Iceland clearly showed that in densely

populated areas, such as European cities, high-quality volcanic ash information is needed,

given the great societal and economic impacts (Bonadonna et al. 2012). However, in order

to model reliably the amount of ash in the atmosphere, several source parameters (i.e.,

plume height, mass eruption rate, grain size of erupted material) should be known in real

time. Infrasound signals provide near-field and far-field characteristics up to several

thousands of kilometers from the eruption. Methodologies to retrieve the volcanic ash

plume height from local infrasound observations are developed (Fig. 15; Ripepe et al.

2013). Plume height (black line) detected by weather Radar in Keflavik (at 155 km from

the volcano) seems to reflect the wind profile, reaching the maximum heights of 8 km

during May 13–17 only when the wind intensity decreases below 10 m/s over the whole

10-km high-altitude profile.

4.4.3 Volcanoes Quasi-permanent Sources Infrasound Calibrations

ARISE results highlighted the potential of the infrasound technology to provide enhanced

information on active volcanoes either near the volcanic eruptive sources or at large

Fig. 15 Vertical wind speed profile at the volcano vent for the period May 5–21, 2010, retrieved from
ECMWF ERA-Interim re-analysis. Plume height (black line) detected by the weather radar in Keflavik (at
155 km from the volcano) seems to reflect the wind profile reaching the maximum height when wind
decreases below 10 m/s. Plume height (red line) modeling the mass eruption rate (MER) derived from
infrasound observations by using the radially averaged buoyant plume theory (BPT) equations. (Redrawn
after Ripepe et al. 2013)
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distances for remote monitoring. To reach these objectives, the atmospheric effects on the

eruption detection and characterization need to be thoroughly determined. The simulations

developed to assess the monitoring capabilities in different atmospheric conditions (see

Sect. 4.1) are used to determine the confidence index when an eruption is detected.

Methods are validated using near- and far-field observations of Mt. Etna eruptions per-

formed during several years (Fig. 16).

Mt. Etna in Italy (37.73�N, 15.00�E) is the highest and most active strato-volcano in

Europe. Its current activity is typically effusive with explosive episodes and lava foun-

taining, with often large ash ejection into the atmosphere affecting nearby cities and local

air traffic. As the activity of Etna is mostly effusive, sometimes accompanied by small-to-

moderate explosions, it often yields a small Volcanic Explosivity Index (VEI 1-2). At a

distance of about 550 km, Mt. Etna is permanently monitored by the IS48 IMS station

(35.80�N, 9.32�E) located in Tunisia (e.g., Assink et al. 2014a). In case of major eruption,

signals can be detected by other IMS stations like IS26 in Germany and IS43 in Russia, at a

distance of 1240 and 2680 km, respectively.

Because of its regular activity, Mt. Etna represents a natural source of repetitive of

signals for evaluating the effects of the atmospheric disturbances on the infrasound

propagation and quantifying the perturbation terms which are not represented by the

numerical modeling predictions. Figure 16 presents a multi-year simulation of the detec-

tion capability of the IS48 to monitor eruptive signals from Mt. Etna. Signals are quasi-

permanently detected from May to September due to an efficient stratospheric ducting and

occasionally in winter during stratospheric wind reversal periods when SSW events occur.

Overall, there is a first-order agreement between the detection periods and periods when

Fig. 16 Simulation of detection capability of the IMS station IS48 to monitor explosive signals from Mt.
Etna: Temporal fluctuation of predicted detection threshold at 0.8 Hz from July 1, 2006, to January 1, 2015
(a), and from January 1, 2014, to January 1, 2015 (b), using the ECMWF High-Resolution Atmospheric
Model (HRES) analyses at 91 mean pressure levels up to 0.01, without (black curve) and with (red curve)
incorporating wind perturbations. Red horizontal bars indicate detection periods of Etna at IS48. The blue
horizontal bar indicates the average source amplitude measured in the near-field by a permanent experiment
array operated by the University of Firenze (UNIFI). c Detection capability maps of the infrasound network
in July and January. The colors indicate the minimum amplitude detectable by the network
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detection thresholds remain smaller than the averaged source amplitude. However, dis-

crepancies are identified around some equinox periods (April–May and September–Oc-

tober) and during anomalous wintertime intervals when the atmosphere is unstable. Such

deviations have already been explained by misrepresented small-scale structures in

ECMWF analysis (e.g., Assink et al. 2014b).

Following the OHP campaign, the wind fluctuations measured with the OHP infrasound

station were statistically extrapolated up to Tunisia and incorporated into ECMWF

effective sound speed profiles calculated along the propagation paths at 50 km altitude to

assess the detection capability of the IS48 Tunisian station. For each propagation simu-

lation, random realizations of vertical wind profiles accounting for a Gaussian enhance-

ment of 20 km width, centered at 50 km altitude, in a range of 30 m/s were integrated.

Incorporating these deviations into network performance simulation tools allows assessing

the sensitivity of the infrasound detection capability to small changes in the stratospheric

winds. Including these wind perturbations enlarges the detection periods, as observed in

Fig. 16, by several weeks and resolves reasonably well the unpredicted observations.

While the effects of such perturbations on infrasound propagation dominate when strato-

spheric winds reduce and reverse, the effects are limited when stratospheric winds are well

developed. These fluctuations are mainly produced by GW activity. The maps of Fig. 16c

represent the corresponding detection capability (as described in Sect. 4.1) computed in

January and July.

It is expected that continuing such studies will enhance network performance predic-

tions and help optimizing the design of future network in order to monitor regions of

interest.

5 Climatology of Gravity Waves at Middle Latitude

Global satellite observations of GW momentum fluxes clearly reveal that GW activity is

not homogeneously distributed over the globe as currently assumed by most GW param-

eterizations in climate models. It rather occurs in pronounced hot spots that can be

attributed to distinct generation mechanisms like generation by topography, jet stream

instabilities or convection (Ern et al. 2011; Hoffmann et al. 2014). The objective of this

section is to present examples of ARISE multi-instrument observations of GWs performed

at different latitudes and altitude ranges.

5.1 Lidar Observations

GWs are known to play a major role in the energy and momentum budget in the MA, and

their influence on the atmospheric structure and circulation has been recognized. Rayleigh

lidar provides vertical profiles of the total density of the atmosphere from about 30–90 km

depending on the signal-to-noise ratio, and it is a powerful tool for the study of atmo-

spheric perturbations. Lidars produce accurate observations with high temporal and spatial

resolution, well adapted for studying atmospheric GWs. Lidar measurements have been

taken continuously at OHP since late 1978 (in the beginning, the vertical resolution was

0.3 km, and it has been improved to 0.075 km since 1994). GW activity, in terms of

potential energy (Ep), is estimated by analyzing raw lidar signals with a variance method at

OHP.
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We used the potential energy per unit mass, Ep (in J kg-1) in order to characterize GW

activity, and it is given by:

Ep ¼ g=Nð Þ2Vatm=2

where g is the gravitational acceleration (* 9.8 m s-2), N the Brunt-Väisälä frequency

and Vatm the atmospheric variance.

Sixteen years of Rayleigh lidar data from 1996 to 2012 have been used to build a

climatology of GW potential energy above OHP.

Figure 17 presents the annual variation of the potential energy at five levels from the

middle stratosphere to the upper mesosphere. We found an annual cycle with a maximum

of GW activity occurring in winter and a minimum in summer in the upper stratosphere–

lower mesosphere. We also found a semiannual cycle with a maximum of GW activity

occurring in winter and in summer and a minimum during the equinoxes in the upper

mesosphere (Mze et al. 2014). Seasonal averages of GW potential energy based on the

same 16-year lidar observations are illustrated in Fig. 17. The dashed line represents the

slope of expected energy growth with altitude without dissipation. GW energy dissipation

is observed at all altitudes but is strongly enhanced above * 70 km during the four

seasons.

5.2 Comparison Between Lidar and Satellite Observations

Rayleigh lidar data provide accurate and altitude-resolved GW energy profiles but are only

available at about 10 locations in the world. A global view of the GW field can only be

determined using satellite data. The GPS radio occultation (RO) temperature profiling

technique, featuring high vertical resolution and global coverage, represents a powerful

means for studying the sources and climatology of GWs. Operational since April 2006, the

COSMIC GPS RO system provides 1500–2000 occultations per day with sampling density

maximizing at mid-latitudes. The GPS RO temperature observations cover the altitude

range between about 8 and 35 km, with the highest accuracy (\ 0.5 K) in the lower

stratosphere and a vertical resolution of 0.2–1.4 km.

Figure 18 shows time series of GW potential energy retrieved from the fluctuations in

vertical temperature profiles using the two different techniques, GPS RO from 10 to 35 km

and Rayleigh lidar above 30 km (Khaykin et al. 2015). This allows the reconstruction of

Fig. 17 (Left) Contour plots of the GW climatology (in J kg-1) from lidar observations above OHP.
(Right) Vertical profiles of potential energy per unit mass (in J kg-1) averaged over winter (December–
January–February, blue line), spring (March–April–May, green line), summer (June–July–August, red line)
and autumn (September–October–November, cyan line). The conservative growth curve is also superim-
posed (black dashed line) with a constant density scale height H * 7 km. (From Mze et al. 2014)
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the GW time evolution from the troposphere near their sources to the stratosphere and the

mesosphere in the regions of their dissipation.

In the common altitude range 33–35 km, we observe a good agreement between the two

techniques. The time of enhancement of GW energy estimated from MERRA meteoro-

logical re-analysis (white lines) is also in good agreement with the observations, but the

energy is about five times lower in the re-analysis because the model can only capture one

part of the GW spectrum.

5.3 Gravity Waves in the Ionosphere

Complementary IAP Prague ionospheric Doppler sounder network measurements extend

ARISE shorter-period GW investigations to ionospheric altitudes. These measurements

have been run in the Czech Republic, South Africa, Argentina and Taiwan. They allow one

to monitor basic characteristics of shorter-period GWs and long-period infrasound at

ionospheric heights, excited by various sources of meteorological, seismic or upper

atmospheric origin. During the summer, propagation in the north to northwest direction

clearly dominates, whereas in winter the dominant direction of propagation of GWs is quite

clearly opposite, to the southeast at northern mid-latitudes. This is shown in Fig. 19. The

comparison with the horizontal wind model HWM07 shows that the analyzed GWs

propagated against the prevailing meridional wind direction in both seasons as theoreti-

cally predicted. GWs are relatively slow and when their phase speed becomes equal to

wind speed, the critical layer wave absorption and dissipation appears.

These observations are in agreement with theoretical studies, showing that GWs from

the lower atmosphere are absorbed into the mean flow and can propagate upwards only

when the propagation direction of GW is opposite to the neutral wind direction (Fritts and

Vadas 2008). The seasonal variation of GW propagation directions reported from optical

observations in mesopause region is similar, indicating that the GWs propagate upward

from the lower atmosphere (Chum et al. 2012b). These observations provide indication

Fig. 18 Combined time series of GW Ep from Rayleigh lidar at OHP and COSMIC (5� 9 5� domain
centered at OHP). White areas represent the missing data. a Monthly mean Ep (color map) and zonal wind
(solid contours—westerly winds of 30 and 80 m/s, dotted contour—zero wind, dashed contour—easterly
wind of 10 m/s). b Weekly means of Ep from COSMIC and lidar (color map) and monthly means of
MERRA Ep. (From Khaykin et al. 2015)
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about the contribution of GWs to the global atmospheric circulation in the upper

atmosphere.

6 Characterizing Gravity Waves from ARISE Observations
and Simulations

6.1 Gravity Waves from Deep Convection

6.1.1 Gravity Waves Observed by the Infrasound Technology

Convection is responsible for the strong near-equatorial GW activity in the Summer

Hemisphere (Fritts and Alexander 2003). It is observed in various satellite data sets (Ern

and Preuse 2012) but difficult to quantify at or near its source due its high spatial and

temporal variability.

An ARISE challenge is to perform new observations in equatorial and tropical Africa

for a better understanding of these phenomena and to determine their impact on the

environment. The objective is to quantify the effects of convection on the general circu-

lation system in the troposphere, stratosphere and mesosphere for weather and climate

models.

The thunderstorm activity at the origin of convection is very strong over ARISE stations

located in Africa as shown in the map of Fig. 20, performed using the LIS experiment data

(Christian et al. 2003; Cecil et al. 2014 (http://thunder.msfc.nasa.gov) recorded in 2013.

The low-latitude dynamical activity is mainly controlled by the thunderstorm activity.

This was demonstrated by previous ARISE work which showed that GWs observed using

the Ivory Coast IS17 IMS infrasound station (6.67�N, 4.85�W) are strongly related to

convection associated with thunderstorms (Blanc et al. 2014). Figure 20 shows the GW

activity recorded during 13 years. This activity is very important in comparison with

activity recorded in mid- and high-latitude regions. The seasonal azimuth change in the

GW direction represents the motion of the ITCZ (inter-tropical convergence zone) which

drive the thunderstorm activity north and south of the station every year.

Fig. 19 From left to right: (i) Velocity and azimuth of neutral wind velocities model (HWM07) at the
observation height, (ii) velocity and azimuth of GWs, (iii) horizontal propagation velocities (vx, vy) and
directions of GWs over the Czech Republic; vx is positive to the East, vy to the north. Red—winter
(October–February), blue—summer (April–August), light blue—equinoxes (March–September). The
observed horizontal velocities represent intrinsic velocities ? wind velocities. Data cover 1-year period
from June 2010 to May 2011 (from Chum et al. 2012b)
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The deep convection also produces a significant cooling in the upper troposphere and

lower stratosphere at global scale as observed by COSMIC GPS radio occultation during

summer in the afternoon over the low-latitude continents. This corresponds to the pre-

cipitation regions observed by the TRMM satellite above 14 km (Khaykin et al. 2013).

This shows that convection can be a proxy of precipitations and the interest of the low-

latitude GW multi-instrument observations in relation with thunderstorm activity. The

infrasound data set covering more than 10 years could provide relevant estimation of this

activity as measurements are continuously recorded.

6.1.2 Upward Propagation of Convection Waves

GWs produced by thunderstorms propagate vertically into the stratosphere, mesosphere

and lower thermosphere. They form concentric rings in the mesosphere imagers

(Alexander et al. 2004; Yue et al. 2009) and in stratospheric satellite observations

(Hoffmann et al. 2014). These waves can be filtered by the background winds as they

propagate upwards through the stratosphere. To quantify the contribution of the large

convection activity produced by thunderstorms in tropical and equatorial regions to the

dynamical exchanges in the atmospheric layers, high-resolution simulations using the

Weather Research and Forecasting (WRF) model were performed and compared to the

observations during strong tropical thunderstorms.

Figure 21 (left) illustrates the continuous generation and propagation of GW packets

during a thunderstorm in Africa to quantify the wave energy which penetrate in the upper

atmosphere. There is a strong asymmetry in wave propagation which is driven by the

eastward wind shear. The arrows show the horizontal component of background wind

velocity. On the left side (upwind), the horizontal wind speed is small but positive and

waves can propagate vertically in the stratosphere. Their amplitude, increasing with alti-

tude, may reach the threshold value beyond which wave saturation can occur. On the right

side (downwind), waves break under the wind filtering process and can no longer penetrate

into the upper stratosphere (Costantino and Heinrich 2013). This study suggests that the

cold-pool outflow from the thunderstorm may be the leading factor in generating initial

high-frequency pressure changes observed by the infrasound station, though later peaks in

pressure are not replicated.

Lidar observations were used for the validation of the model. Figure 21 (right) shows

the vertical profiles of potential energy derived from the WRF model (red line) and lidar

observations (blue line) on a semi-log scale (x axis) in October. The conservative growth

Fig. 20 Left: GW activity measured during 13 years in the IS17 infrasound station in Ivory Coast. The
color scale indicates the logarithm of the number of detections. GWs originate from deep convection. The
GW azimuth variations are produced by the thunderstorm seasonal north–south motion over the infrasound
station. Right: Map of thunderstorm activity in Euro-African sector superimposed on the infrasound stations
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rate curve is also superimposed (green dashed line) with a constant density scale height of

7 km. Horizontal error bars indicate the uncertainty with respect to the temporal variability

(Costantino et al. 2015).

This study quantifies the contribution of GWs from thunderstorms to the general cir-

culation of the atmosphere which can be very strong in tropical configurations. It can be

validated in the next project steps using complementary ARISE instruments.

The penetration of GW from thunderstorm convection into the ionosphere was observed

with the ionosonde located in Francourville (center of France) operating at the rate of one

ionogram per minute for an observation campaign. The same configuration was used when

observing the total solar eclipse of August 11, 1999 (Farges et al. 2001). A major thun-

derstorm occurred near the ionosonde on the August 16, 2004, between 02:00 UT and 06:

00 UT as shown in the lightning map (Meteorage) of Fig. 22. The ionization of the F

region peak increased by 40% in comparison with the International Reference Ionosphere

(IRI) model (Bilitza 2001). Ionospheric altitude oscillations at a few tens of minutes period

Fig. 22 Example of GW activity observed in the ionosphere during a thunderstorm. (Left) Map illustrating
the lightning impacts over France on August 16, 2004 (color indicates the impact time in UT). The yellow
diamond gives the location of the Francourville ionosonde. (Right) Altitude versus time for different plasma
frequencies (2, 2.5, 3 and 3.5 MHz). The blue line indicates the height variation of the F2 layer (IRI model)

Fig. 21 (Left) GWs generated by a thunderstorm (in blue, at the bottom of the figure) for a vertically
sheared horizontal velocity. Vertical velocity is computed from ground to an altitude of 77 km. Black
contours represent strong variations of the potential temperature. (Right) Comparison between the vertical
profiles of potential energy derived from WRF model (red) and lidar observations (blue) shows a general
good agreement. The conservative growth rate is superimposed in green dashed line (from Costantino et al.
2015)
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were observed at different plasma frequencies (related to the electron density). The altitude

variation of the F2 layer is generally decreasing during this time period as shown by the

blue line (IRI model). Such waves are characteristic of thunderstorm convective activity as

observed at ground with infrasound sensors (Blanc et al. 2014). This example shows that

ionospheric observations can provide a relevant indication about the GW penetration into

the upper atmosphere, as a complement to the other ARISE instrumentations.

6.2 Observations of Mountain Waves with the Infrasound Technology

Mountain waves are well identified as a component of the Earth wave activity (Fritts and

Alexander 2003). They are generated by a stably stratified air flow over a topography

barrier. Air parcels are lifted up by the mountain and generate turbulences and atmospheric

waves as they move downstream from the mountain. Mountain GWs are expected to be

stationary with respect to the ground. Horizontal wavelengths for vertically propagating

waves are typically tens to hundreds of kilometers. They are observed by satellites in

specific mountain regions (Wu et al. 2006) and by balloons (Plougonven et al. 2008),

showing that topography may be an important source of drag on the atmospheric circu-

lation (Alexander et al. 2009). However, because of the difficulty to observe their small

horizontal scales and short periods, their climatology and variability is not fully under-

stood. The determination of their global impact compared to GWs from other different

sources is also challenging.

Infrasound waves originating from mountain areas were identified by the IMS network.

Their period is few tens of seconds and their duration can vary from hours to days with a

stable azimuth directed toward mountain areas. As these waves propagate over large

distances in the infrasound wave guide, they can be detected by several stations of the IMS

infrasound network and their origin can be determined. This work performed at global

scale provided the map of Fig. 23 showing the infrasound sources in the mountain areas

and their seasonal variability.

Fig. 23 Left: Map of mountain waves from remote observations in the infrasound frequency range
compared with GW maps observed by satellite (right) (from Hoffmann et al. 2014). The large mountain
wave activity over South America is observed by both technologies indicating that the infrasound mountain
waves are indicators of the GWs observed by satellites over mountains. The infrasound technology isolates
mountain waves from waves generated by other sources (convection)
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The infrasound mountain waves could be originating from turbulences which are also

involved at larger scales in the origin of mountain GWs. Because of this possible related

origin, the infrasound mountain waves are expected to be a tracer of the mountain GWs.

The mountain waves observed by the infrasound technology differ from the other infra-

sound waves by specific criteria depending on frequency range and signal duration. The

separation of waves from deep convection from other types of GWs could be difficult in

satellite observations (Hoffmann et al. 2014). The interest of the proposed observations is

the possibility of continuous remote monitoring at high temporal resolution and at global

scale. The stationarity of the GWs makes difficult remote observations at global scales by

ground-based observations.

6.3 Parametrization of Gravity Waves

6.3.1 Example of Parametrization of Gravity Waves from Fronts and Jets

The spatial scales of GWs being too small to be represented in Earth system models at

present, the effects of GWs on the resolved scales need to be parameterized either in GCMs

or in atmosphere-dependent studies (e.g., long-range infrasound propagation).

Different methods were developed and realistic GW energy spectra were produced out

of a stochastic multi-wave scheme by averaging over a large ensemble of realizations (de

la Camara et al. 2014). Based on the theoretical and experimental facts that GWs can be

spontaneously emitted during the evolution of a near-balanced flow, a new parameteri-

zation of GWs linked to fronts and jets was proposed by de la Camara and Lott (2015). The

parameterization used the stochastic series of few monochromatic waves, whose wave

properties are chosen randomly, to analyze GWs from off-line runs using daily data from

the ECMWF re-analysis ERA-Interim (ERAI).

Figure 24 shows the launched momentum flux evaluated off-line using background

fields of wind, vorticity and temperature from ERAI. The absolute momentum flux is

calculated using the explicit formula (3) and (4) in de la Camara and Lott (2015), after

testing that GWs transporting that stress are not saturated at the 950 hPa GW launching

Fig. 24 Frontal launched GW stress in mPa (shaded) and the 0.012 K km-1 isoline of horizontal gradient
at 600 hPa, for the January 15, 2010 (de la Camara and Lott 2015)
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level. The results show that at a given altitude, the probability density functions present

longer tails in the extratropical winter. Their shape evolves toward shorter tails as we go up

in the atmosphere. These results qualitatively agree with those derived from the HIRDLS

instrument on NASA’s Aura satellite shown by Wright et al. (2013) especially in the

extratropical regions. The cause of such distribution is related to dynamical filtering by the

winds that modifies the shape of the launched probability density function toward a log-

normal distribution (de la Camara and Lott 2015) as suggested by previous studies (e.g.,

Hertzog et al. 2012).

Figure 24 is obtained during one single day on January 15, 2010. The GW stress is

stronger at mid-latitudes, particularly in the Northern Hemisphere, and presents pro-

nounced regional variations with peak values larger than 60 mPa. However, the parameters

in the parameterizations themselves are not fully constrained by GW observations.

6.3.2 Gravity Waves Parametrization in Infrasound Simulations

Realistic GW models are needed for the representation of the infrasound propagation as

GWs strongly produce additional partial reflections in the stratosphere and mesosphere.

Recently, a linear solution has been developed to model the interaction between an

incoming acoustic wave and a randomly perturbed atmosphere, by using the forward-

scattering approximation. The wave mode structure is determined by the effective sound

speed profile which is strongly affected by GW breaking. The values of the tunable

parameters were chosen in order to produce GW momentum flux intermittency that

compares well with the balloon measurements over oceanic areas (Hertzog et al. 2012).

While some of the characteristics of the stable front can be directly related to that of a few

individual GWs, the amount of the launched GWs included in climate models can be

estimated. By considering a set of plausible GW profiles and examining how the GWs

manifest within the infrasound model, we can learn about the probability distribution

underlying the numerically obtained parameters.

In long-range infrasound propagation studies, it is currently assumed that the vertical

sound speed profiles are fixed and obtained from operational numerical weather predictions

(e.g., ECMWF) or atmospheric climate re-analysis. This assumption, although providing a

good approximation of the tropospheric infrasound waves, cannot be used to compute the

stratospheric arrivals without adding uncertainties. In most cases, the ECMWF profiles are

matched to statistical data for altitudes higher than 70–80 km, using simplified functions.

The resulting atmospheric fields include uncertainties that depend on the altitude. The

point is that there is no consensus on how such atmospheric specifications can be obtained

from atmospheric data and it is now generally recognized that small-scale GW is filtered

out in the resulting fields (Drob et al. 2013). To first order, the amplitude of the upward

propagating waves grows in altitude as 1/Hr, where r is the density of the atmosphere.

Above 60 km, the amplitude of the unresolved waves can reach more than 10% of the

sound speed. Even though in the lower atmosphere the amplitude of these waves represents

a small fraction of the overall variations of the average background state, recent studies

(e.g., Bertin et al. 2014) have shown that GW may dramatically alter the stratospheric

phases. This appears to be due to both the extreme sensitivity of the signal amplitude to

wind gradients and to the inherent need to deal with small-scale fluctuations when trying to

determine the waveform (Millet et al. 2007).
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7 ARISE Observations of Sudden Stratospheric Warming Events

Sudden stratospheric warmings (SSWs) are regularly occurring features in winter in the

northern hemisphere (Charlton and Polvani 2007) characterized by dramatic changes in the

stratospheric wind and temperature. SSWs are the clearest and strongest manifestation of

the stratosphere–troposphere interactions (Charlton and Polvani 2007; Shaw and Shepherd

2008a; Gerber et al. 2009) and are thought to lead to prolonged periods of colder weather

in Northern Europe during winter and spring. The importance of stratospheric variability

and especially major SSWs increased notably since the evidence indicating that processes

in the stratosphere present a challenge for weather forecasting (Baldwin and Dunkerton

2001; Charlton-Perez et al. 2004; Shaw and Shepherd 2008a). Progress has been made

toward a more comprehensive representation of the atmosphere in order to better capture

this stratospheric–tropospheric coupling (Randel et al. 2004; Charlton-Perez et al. 2013).

For that reason, an important part of trying to understand and model these events more

effectively is building a detailed understanding of their dynamics through multiple com-

plementary observational platforms. As a demonstration, the major warming of January

2013 is briefly discussed to demonstrate the capabilities of the ARISE network.

7.1 Multi-instrument Observations of Sudden Stratospheric Warming Events

The ARISE measurements during the OHP 2012–2013 field campaign help to better

describe the interaction between atmospheric layers from the ground to the mesosphere

during these events and the influence of large-scale waves on the atmospheric dynamics.

Figure 25 shows the development of the major SSW in January 2013 and compares the

temperature from ECMWF forecasts with temperature profiles observed by lidar. This

comparison reveals large temperature differences between the analyses and measurements

reaching 30�K especially after the polar vortex split. A significant cooling around the upper

stratosphere and mesopause preceded the SSW.

Before vortex displacement, temperature profiles over OHP from later forecasts are

similar to lidar observations. After vortex displacement, temperature profiles from

Fig. 25 Maps of the temperature ECMWF forecasts during the winter 2012/13 SSW (top). Comparison
between the temperature lidar profiles and ECMWF models (bottom). After the polar vortex split, lidar
observations show that the temperature is underestimated by the model in the stratosphere and overestimated
in the mesosphere where a cooling is expected

Surv Geophys

123



forecasts out to 7 days are consistent with OHP lidar observations, and the analysis

replicates the temperature structure at all altitudes. After the vortex split, forecasts struggle

to replicate the temperature profile at all altitudes, and the upper stratosphere is poorly

represented in the analysis (attributed to poor forecasting of the split-vortex positions).

The right panels of Fig. 26 present comparison between WIRA zonal wind measure-

ments performed at OHP (Rüfenacht et al. 2014) and ECMWF during the same 2013 SSW.

The wind difference between the model and measurements reaches several tens of m/s in

the upper stratosphere. The spatial coverage of disturbances related to SSWs is very large,

as shown in the ECMWF maps in Fig. 25, and results were also compared with meteor

radar observations performed during the same time at higher latitude in Trondheim

(63.4�N, 10.5�E). This radar measures wind and temperature (above 70 km) from meteor

echoes (Hocking et al. 2001). The four-day moving average zonal wind profile (in m/s) is

presented in Fig. 26 (left top panel).

The measured profile is merged with tropospheric and stratospheric winds from the

MERRA model. Dotted lines highlight ± 10, ± 20, ± 40, ± 60, ± 80 and ± 100 m/s.

The zero wind contour and onset of the SSW are indicated by a black line and black dash-

dotted line, respectively. The mesospheric winds measured during the SSW are different

from the Whole Atmosphere Community Climate Model (WACCM) (bottom left panel)

showing the limitation of models in describing the wind in the mesosphere where no

nudging is applied.

Fig. 26 (Left top) Four-day moving average zonal wind (in m/s, with tides removed) from meteor radar
observations (70–100 km) complemented with MERRA re-analysis results (below 68 km) (from de Wit
et al. 2014). (Left bottom) Similar diagram using the Whole Atmosphere Community Climate Model with
Specified Dynamics (WACCM-SD). (Right top) WIRA zonal wind between 30 and 80 km. (Right bottom)
ECMWF zonal wind. During the January, SSW stratospheric zonal winds are reversed
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The meteor radar data show a divergence in the momentum flux at 90 km altitude

6 days prior to the SSW onset of January 7, 2013 (as determined from the timing of the

stratospheric zonal wind reversal). During this time, a maximum eastward forcing

of * ? 145 ± 60 ms-1 d-1 was measured. As the SSW evolves, GW forcing turns

westward, reaching a minimum of * - 240 ± 70 m s-1 d-1 * 18 days after the SSW

onset (de Wit et al. 2014, 2015).

GW precursor activity was also observed by lidar and satellite, up to one week in

advance in the temperature and wind fields of the upper stratosphere, as shown in Fig. 27

for the same SSW. A strong GW increase is detected above 37 km by the lidar in late

December to early January reflecting a MA strongly perturbed by PW activity, which led to

the major sudden stratospheric warming (SSW) with an onset on 7 January.

The increase in GW energy begins above the stratopause (located at * 45 km) around

mid-December and extends down to 37 km in late December (Khaykin et al. 2015). The

combination of observations and numerical modeling will contribute to a better under-

standing and prediction of these atmospheric events.

7.2 Evaluation of Forecasting Using Infrasound Remote Sensing During
Sudden Stratospheric Warming Events

The infrasound propagation strongly depends on the state of the atmosphere. During a

SSW, changes in the stratospheric wind and temperature substantially influence the

infrasound atmospheric waveguide, which is detectable in the infrasound observations at

the ground (e.g., Donn and Rind 1971; Evers and Siegmund 2009; Hedlin and Drob 2014;

Assink et al. 2014a). Variations range from minor, for example, small bearing variations, to

dramatic, i.e., no longer detecting a signal in a specific direction. Figure 3 (bottom) shows

that during the January 2013 major stratospheric warming, westerly microbaroms from the

Atlantic Ocean changed for microbaroms coming from the northeast and corresponding to

Pacific Ocean microbaroms under the effect of stratospheric wind inversion. Microbaroms

observed by the IMS infrasound network around the globe (e.g., Evers and Siegmund 2009;

Smets and Evers 2014) can then be used to provide a global SSW signature. A difficulty,

however, of using ambient noise from ocean surface wave interaction is the source

variability.

Fig. 27 Combined weekly means time series of GW potential energy (GW Ep) from Rayleigh lidar and
COSMIC at OHP and monthly means of MERRA Ep (gray-scaled contours, denoting 0.2, 0.3, 0.5, 1, 2, 4
and 6 units of J kg-1). (From Khaykin et al. 2015)
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Therefore, the capability of infrasound to evaluate the stratospheric predictability is

demonstrated for the same SSW of January 2013 using a volcano, as the source location is

fixed and relatively well understood (Fee et al. 2010; Matoza et al. 2011a, b; Marchetti

et al. 2013). A year of near-continuous infrasound detections from Mount Tolbachik is

used, observed by IMS IS44 infrasound station on the Kamchatka peninsula in Russian

Federation (55.8�N, 160.3�E). IS44 is located at approximately 347 km southwest of

Mount Tolbachik, with a true bearing of 28.11� clockwise from north. For the first time,

weather forecasts for different forecast steps are evaluated using infrasound. Top of Fig. 28

shows the stratospheric zonal wind inversion during the SSW, inducing summer wind

conditions in winter. Figure 28 (middle) shows a comparison between the observed signals

and the propagation simulations using three-dimensional ray tracing and ECMWF high-

resolution deterministic forecast. Significant inconsistencies or lack of simulated returns

indicates a possible difference between the true state of the atmosphere and the consulted

forecast in the vicinity of the return height. In summer, the deviations fall within the array

Fig. 28 (Top) ECMWF zonal wind profile showing the seasonal variation of the wind direction and the
2013 SSW (delimited in gray) generating an inversion of the winds in winter. (Middle) Back azimuth
deviation of the quasi-continuous infrasound signals from the Mount Tolbachik volcano (Kamchatka, RU)
during the 2013 SSW period. Comparison between observations (black dots) and 3-D tracing results (red
dots) as a function of time using the ECMWF HRES forecast (nowcast). The blue dots correspond to the
simulated arrivals that have propagated through the mesosphere and lower thermosphere, for which the
MSIS and HWM climatology has been used (from Smets et al. 2016). (Bottom) Details of the comparisons
during the SSW event. This comparison shows that the differences between back azimuth forecasting and
observations are larger during the SSW and SSW recovery time
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uncertainty. During the SSW and equinox, significantly large bearing deviations are

denoted with an increased mean deviation. Large misfits occur at the warming onset and

offset. The middle atmospheric forecast skill drop is related to data assimilation issues

(Diamantakis 2014), and the present example shows that infrasound observable could

provide relevant data sets for improving future assimilations.

8 Data Utilization for Weather Forecasting and Climate Models

The ARISE project also investigated the way in which the ARISE network could fill

current and future data gaps for both numerical weather prediction and climate simulations.

One of the most exciting results of ARISE is the progress made toward developing

methods to assimilate ARISE data in future weather forecasting models (ECMWF) to

increase their accuracy from about 10 days today, to monthly and seasonal timescales.

ARISE work set the objectives for ARISE in this respect.

ARISE observations could help constrain the uncertainty in these measurements and

provide high-resolution information to improve our knowledge of the MA dynamics and to

create advanced dynamics data products that will be used for the validation and

improvement of weather forecast and climate numerical models. The inter-technology

ARISE measurement campaigns at OHP provided high-resolution data of high quality

which have been used to evaluate NWP and climate models by characterizing the mean

state of the MA GWs and PWs.

Data provided the vertical structure of the wind and temperature from the ground to the

mesosphere by using lidar and mesospheric observations, complemented by continuous

infrasound measurements. Together with additional ground-based wind radar system, such

complementary techniques help to better describe the interaction between atmospheric

layers from the ground to the mesosphere and the influence of GWs and PWs on the

atmospheric dynamics.

The analyses of the ARISE data allowed characterizing atmospheric perturbations in the

MA and their effects on the mean circulation. GWs cannot be resolved directly by current

global circulation models due to their sub-grid scales. The ARISE database provides novel

observations on the spatial and temporal distribution of GW characteristics at different

ranges of altitudes and time of year, thus building a detailed understanding of large-scale

atmospheric disturbances through multiple independent and complementary observational

platforms.

8.1 Impact of the Stratosphere Dynamics on Numerical Weather Prediction

As reviewed by Tripathi et al.(2014) as a part of the ARISE project, correctly predicting

the evolution of extreme events in the stratosphere such as SSW can lead to improvements

in tropospheric weather forecasts on weekly timescales. One of the main ARISE appli-

cation is then the use of these data to improve the weather forecasting models.

As part of the ARISE project, test experiments a general circulation model (specifically

the HADGEM2 Met Office Unified Model—UM) were conducted to diagnose the impact

of representative upper stratospheric errors on forecasts of the troposphere and

stratosphere.

An idealized approach was taken, in which forecasts of the state of a long control run of

the model were made by initializing runs with small perturbations from this control state.
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To simulate the impact of observations at different altitudes, the model was nudged back to

the control run over the whole stratosphere and in the upper stratosphere only (above

40 km) where there is a dearth of current observations.

Figure 29 shows the ensembles of zonal mean zonal wind in the upper troposphere, for

un-nudged and nudged (upper stratosphere) forecasts. The ensemble spread of the latter is

much smaller, because the dynamics at this level are influenced by the stratosphere. The

ensemble spread shown here, and the differences between the forecasts, is a realistic

representation of different operational forecasts at these levels.

These idealized experiments replicated the surface effects of SSW reported in previous

studies. Figure 30 shows the pattern of surface temperature anomalies averaged over days

15–30 for 15 SSW cases. The negative northern annular mode (NAM) pattern is clear, with

Fig. 29 Zonal mean zonal winds (ZMZW) of two SSW cases from the control run (thick dark line) and
their 30-day ensemble forecasts (light blue) with upper-stratosphere nudged ensemble (green lines) for the
lower troposphere (1000 hPa). Stratospheric nudging reduces the ensemble spread for the nudged ensemble,
indicating enhanced predictability at these altitudes

Fig. 30 Sudden stratospheric warming impact on weather. The surface temperature anomalies are averaged
over forecast days 15–30 for 15 SSW cases. The stippling indicates significance at the 95% confidence level
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a warming over North America and a cooling over Northern Europe. This pattern has been

shown in previous studies, illustrates the teleconnection between the stratosphere and

lower troposphere and indicates that idealized experiments give a realistic representation of

the associated atmospheric dynamics.

The weather forecasting studies found that relaxation of either the whole stratosphere or

the upper stratosphere only (simulating the effect of data assimilation at these altitudes)

improved the representation of average surface temperature patterns, especially over

eastern North America and Northern Russia (Fig. 30). Similar results were shown in

studies looking at longer forecasts (out to 60 days); however, our results are particularly

useful because they demonstrate an impact on routine weather forecasting timescales (up to

30 days). Additionally, they also demonstrate the potential impact of upper stratospheric

observations on forecast quality for the stratosphere and troposphere during SSW events.

8.2 Toward Data Parametrization and Assimilation

The OHP campaigns with collocated ARISE measurements help to better describe the

interaction between atmospheric layers from the ground to the mesosphere and the influ-

ence of large-scale waves on the atmospheric dynamics. Comparing ARISE observations

of the winter 2012/2013 SSWs with forecasts reveals that there was cooling around the

mesopause that preceded both major SSWs and that there was difficultly in forecasting

vortex positions after the vortex split. There were also significant changes in infrasound

propagation associated with the changes in stratospheric winds.

Most GWs are too small to be explicitly resolved by NWP models; instead, parame-

terizations are used to simulate the drag on the mean flow caused by wave breaking.

However, the paucity of measurements means that NWP parameterization schemes are

often tuned to produce more realistic temperature structures near the tropopause, or to

improve representation of winds, rather than to replicate the actual deposition of GW

momentum. In addition, non-orographic GW parameterizations used in NWP models are

usually spatially and temporally invariant and will not capture the seasonal behavior.

ARISE infrasound observations can be used to measure small-scale GWs that are not

observed by other techniques. GW measurements, made during 13 years by the micro-

barometer array IS17 in Ivory Coast, have been analyzed. The results clearly demonstrate a

seasonal trend in GW propagation directions, average momentum flux, intrinsic frequency

and vertical and horizontal wave numbers. The seasonal trend in propagation direction was

identified by Blanc et al. (2014) and is attributed to seasonal changes in the tropical

convergence zone of the winds, driving thunderstorm activity. The waves measured here

are thought to be triggered by deep convection.

The analysis of the dominant GWs shows that the distribution of momentum flux peaks

at around 10 mPa. This flux is larger than satellite climatologies, which are temporal

averages, measuring larger scales than those detected by the microbarometer array, and at

very different altitudes. Particularly encouraging is the distribution of horizontal and

vertical wave numbers and the intrinsic frequencies. The frequencies and GW numbers

measured by the array show that the instrument resolves smaller-scale waves than other

techniques. Measurements at these scales are particularly valuable because they are at the

scales parameterized in NWP models, where measurements have previously been lacking.

Additionally, the ability to capture the intermittency of GWs means that GW measure-

ments made by these instruments have the potential to provide valuable information to the

modeling community.
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Figure 31 shows the typical vertical and horizontal wave number measured by existing

techniques (shown by the green shading) and those observed at IS17 (blue dots). Results at

IS17 show that horizontal and vertical wave number distributions both peak close to 20 km

(4–5 9 10-4 m-1); the distributions extend from approximately 3 km up to 400 and

50 km for horizontal and vertical wave numbers, respectively. The dominant intrinsic

frequencies have periods of around 10–20 min (around 10-2 s-1). This covers most of the

region that cannot be seen by any of the other observation conventional techniques. This

improved resolution provides a long-term data set of GWs at parameterization scales.

The practicalities of the data use were discussed in the ARISE roadmap for the use of

ARISE measurements for weather and climate monitoring. In the ARISE project, the basis

toward NWP is formed, assessing the model variability and model bias estimation and

preliminary achievements in GW parameter estimation. Although ARISE shows great

potential toward NWP, the first impact is still rather limited because of the complexity of

atmospheric processes, inducing difficulties in the GW parametrization, and the still

limited improved observations which will be developed in the next stage of the project.

Actual use the data for weather and climate monitoring is challenging. Direct assimilation

of new observations is extremely costly, and risky for operational weather centers,

requiring clear proof of the benefits. Therefore, different steps and aspects that meet the

needs of weather and climate monitoring are identified, aimed at being part of the com-

munity of weather and climate monitoring. In particular, the next step will be to develop a

spatially and temporally varying climatology of the GW spectrum at the ground (from

infrasound measurements) and in the stratosphere (from lidar measurements) and meso-

sphere (from meteor radar measurements). This climatology will be compared to outputs

from the GW parameterization of the HADGEM and IPSL-LMDz models and to outputs of

meteorological mesoscale models.

9 Conclusion and Perspectives

ARISE demonstrates the advantage of an infrastructure that integrates various independent

middle atmospheric measurement techniques to provide quantitative understanding of the

troposphere stratosphere–mesosphere–thermosphere dynamical coupling relevant to a

broad community and for a wide variety of applications:

Fig. 31 Comparison of GW
scales observed by the Ivory
Coast infrasound array (blue) and
other technologies: satellites
microwave sub-limb, infrared
nadir viewing, super pressure
balloons, radiosondes (green)
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9.1 Characterization of Tropospheric and Stratospheric Gravity Wave
Variability

An important driver of the stratospheric variability is severe weather. When GWs produced

by convection from thunderstorms propagate vertically into the stratosphere, their cumu-

lative effects may disturb the general atmospheric circulation. Valuable information for

climate studies has been derived from the analysis of archived GW data recorded in

tropical infrasound stations where activity is very intense. Lidar network provides GW-

induced fluctuations in the wind profiles which are needed to fully retrieve the structure of

these disturbances in the stratosphere and mesosphere. Mountain waves can also be

characterized. Global satellite observations of the MA GW momentum fluxes clearly

reveal that the activity induced by convection systems is not homogeneously distributed

throughout the atmosphere as currently assumed by most GW parameterizations in climate

models. ARISE data provide then an efficient way to more precisely determine the impact

of wave activity on the environment at different latitudes. They also provide useful

information that improves knowledge about the source mechanism involved in the gen-

eration and coupling processes between the troposphere and the stratosphere.

9.2 Better Representation of Stratospheric Variability for Further Improving
Weather Forecasts on Timescales up to Weeks Ahead

Comparisons between the OHP observations by lidar, airglow, infrasound and the ECMWF

model already quantified model uncertainties at short timescales. The standard deviation of

the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind

between 40 and 60 km altitude. These data sets have begun to be used as a benchmark for

model validation.

The GW and PW climatology and the better SSW description, possible with the sys-

tematic integration of ARISE data, will allow a better description of their effects in the

general circulation system. In ARISE next step, data will be assimilated for further

improving the accuracy in short- and medium-range weather forecasts on timescales up to

several weeks. This application concerns important topics such as agriculture, prediction of

energy consumption, tourism, insurance, civil protection, renewable energy production and

other environmental issues.

9.3 Near-Real-Time and Continuous Monitoring of Natural Hazard

ARISE investigated the potentials and benefits of the ARISE technologies for monitoring

extreme events including volcanoes, earthquakes, severe weather, meteors, industrial or

accidental explosions. For each type of extreme event, advanced data products are iden-

tified for potential use by ARISE infrastructure end users, such as civil security and

decision-making agencies and the scientific community. The ARISE network appears to be

quite well developed to monitor most of the expected extreme events in Europe.

With the future completion of the IMS infrasound network and the addition of local and

regional networks, the infrasound technology is becoming a reliable observation system to

monitor volcanoes at large distances. This technology is extremely efficient both in pro-

viding real-time reliable source-term parameters from local (tens of km) observations,

necessary for improved modeling ash dispersal in the atmosphere, and also in monitoring

activity from long-range (thousands of km) observations of unmonitored volcanoes. In
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particular, the eruption chronology can be inferred from remote infrasound observations

(hundreds of km from the source) with greater temporal resolution and larger observation

periods than is possible with satellite data alone.

ARISE provides the eruption notifications including confidence index representative on

propagation conditions and additional analysis results. In a further stage, infrasound signal

parameters characterizing the intensity of the eruptions (Volcanic Explosivity Index) and

the amount of ash injected into the atmosphere, as well as ash height, will be explored.

Such studies interest several VAACs (including VAAC Toulouse) and the IAVWOPSG.

In parallel, volcanoes are repetitive infrasound sources which can be used for remote

sensing of the atmosphere when the source parameters are well determined. Methods using

volcanic infrasound sources are developed to reconstruct wind profiles in the stratosphere

and mesosphere. Other permanent sources of interest, globally detected, like the ocean

swell or man-made sources such as repetitive quarry explosions, could also provide new

constraints to better characterize the atmospheric mean flow and its variability.

9.4 Evolution of the Atmospheric Disturbances in Relation to Climate
Change

The ARISE platform is dedicated to an implementation period of several decades. The

perspective of an optimized infrastructure with improved coverage, especially at high and

low latitudes, and additional complementary observations in the stratosphere and meso-

sphere could change our vision of the dynamics of the atmosphere and its disturbances as

well as encourage long-term studies in Europe.

Future changes in stratospheric climate could play a significant role in determining

changes in surface climate over the coming century. ARISE data are already used to

quantify trends in the temperature in the different atmospheric layers which are valuable

indicators for climate change studies. Archived lidar data contribute to monitoring long-

term stratospheric cooling at different latitudes. The infrasound data recorded during over

more than ten years at some stations also present a potential to monitor long-term mean

trends of weather events. The long-term evolution of convection in Africa presents a large

environmental interest as it is related to precipitation as rain. ARISE integrates operational

infrastructures dedicated to long-term atmospheric monitoring (IMS infrasound network

for CTBT verification, NDACC lidar network), complemented by observatories (OHP,

OPAR, ASC, Esrange), national infrastructures (i.e., forming the European infrasound

network), and such observations are ongoing. The provided long-duration database will be

used for weather, climate and extreme event studies.
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Hoareau C, Dionisi D, Duflot V, Vérèmes H, Porteneuve J, Gabarrot F, Gaudo T, Metzger JM, Payen
G, Leclair de Bellevue J, Barthe C, Posny F, Ricaud P, Abchiche A, Delmas R (2013) Maı̈do
observatory: a new high-altitude station facility at Reunion Island (21�S, 55�E) for long-term atmo-
spheric remote sensing and in situ measurements. Atmos Meas Tech 6:2865–2877. https://doi.org/10.
5194/amt-6-2865-2013

Bertin M, Millet C, Bouche D (2014) A low-order reduced model for the long range propagation of
infrasounds in the atmosphere. J Acoust Soc Am 136:37. https://doi.org/10.1121/1.4883388

Bilitza B (2001) International reference ionosphere 2000. Radio Sci 36(2):261–275
Blanc E (1985) Observations in the upper atmosphere of infrasonic waves from natural or artificial sources:

a summary. Ann Geophys 3:673–687
Blanc E (2010) Space observations of Transient Luminous Events and associated emissions in the upper

atmosphere above thunderstorm areas. C R Geosci 342:312–322
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Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C
(2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature

Surv Geophys

123

https://doi.org/10.1175/mwr-d-13-00003.1
https://doi.org/10.1002/qj.2368
https://doi.org/10.1002/qj.2368
https://doi.org/10.5194/acpd-13-1-2013
https://doi.org/10.1002/2014GL062891
https://doi.org/10.1111/j.1365-246X.2012.05518.x
https://doi.org/10.1111/j.1365-246X.2012.05518.x
https://doi.org/10.1093/gji/ggu324
https://doi.org/10.1093/gji/ggu324
https://doi.org/10.1029/2003GL017581
https://doi.org/10.1029/2003GL017581
https://doi.org/10.1029/2004JD005587
https://doi.org/10.1029/2004JD005587
https://doi.org/10.1029/2005JD006020
https://doi.org/10.1029/2005JD006690
https://doi.org/10.1029/2007JD009509
https://doi.org/10.1029/2011JD016670
https://doi.org/10.1029/2011JD016670
https://doi.org/10.1002/grl.50619
https://doi.org/10.1002/grl.50619


measurements with numerical weather prediction models. J Geophys Res. https://doi.org/10.1002/.
2015JD023273
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