1,002 research outputs found

    Children Without Play

    Get PDF

    3D Visualisation of Additive Occlusion and Tunable Full-Spectrum Fluorescence in Calcite

    Get PDF
    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallisation processes. There is growing evidence that these additives are often occluded within the crystal lattice, where this promises an elegant means of creating nanocomposites and tuning physical properties. Here, we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy was then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required

    The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana

    Get PDF
    The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence

    Quantifying functional consequences of habitat degradation on a Caribbean coral reef

    Get PDF
    This is the final version. Available on open access from the European Geosciences Union via the DOI in this recordCode and data availability: Data and R code will be made available on requestCoral reefs are declining worldwide. The abundance of corals has decreased alongside a rise of filter feeders, turf, and algae in response to intensifying human pressures. This shift in prevalence of functional groups alters the biogeochemical processes in tropical water ecosystems, thereby influencing reef functioning. An urgent challenge is to understand the functional consequences of these shifts to develop suitable management strategies that aim at preserving the biological functions of reefs. Here, we quantify biogeochemical processes supporting key reef functions (i.e. net community calcification (NCC) and production (NCP) and nutrient recycling) in situ for five different benthic assemblages currently dominating shallow degraded Caribbean reef habitats. To this end, a transparent custom-made enclosure was placed over communities dominated by either one of five functional groups - coral, turf and macroalgae, bioeroding sponges, cyanobacterial mats, or sand - to determine chemical fluxes between these communities and the overlying water, during both day and night. To account for the simultaneous influence that distinct biogeochemical processes have on measured variables, the rates were then derived by solving a model consisting of differential equations describing the contribution of each process to the measured chemical fluxes. Inferred rates were low compared to those known for reef flats worldwide. Reduced accretion potential was recorded, with negative or very modest net community calcification rates for all communities. Net production during the day was also low, suggesting limited accumulation of biomass through photosynthesis and remineralisation of organic matter at night was relatively high in comparison, resulting in net heterotrophy over the survey period for most communities. Estimated recycling processes (i.e. nitrification and denitrification) were high but did not fully counterbalance nutrient release from aerobic mineralisation, rendering all substrates sources of nitrogen. Results suggest similar directions and magnitudes of key biogeochemical processes of distinct communities on this shallow Curaçaoan reef. We infer that the amount and type of organic matter released by abundant algal turfs and cyanobacterial mats on this reef likely enhances heterotroph activity and stimulates the proliferation of less diverse copiotrophic microbial populations, rendering the studied reef net heterotrophic and drawing the biogeochemical "behaviour"of distinct communities closer to each other

    Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology

    Get PDF
    White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of wings to hibernating bats in relation to the damage caused by G. destructans and propose that mortality is caused by catastrophic disruption of wing-dependent physiological functions. Mechanisms of disease associated with G. destructans seem specific to hibernating bats and are most analogous to disease caused by chytrid fungus in amphibians

    Scanning Laser Ophthalmoscopy (SLO)

    Get PDF
    Since the first scanning laser ophthalmoscope (SLO) was introduced in the early 1980s, this imaging technique has been adapted and optimized for various clinical applications based on different contrast mechanism. Reflectance imaging, where the back scattered light is detected, is widely used for eye tracking and as reference image for OCT applications. But also the reflectance modality itself has several important diagnostic applications: laser scanning tomography (SLT), imaging with different laser wavelengths (Multicolor contrast) and others. Fluorescence imaging channels with different excitation wavelengths were introduced to SLOs for angiography, i.e. for the visualization of the vascular system after intravenously injecting an appropriate dye, as well as for autofluorescence imaging of endogenous fluorophores within the retina

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore