108 research outputs found

    Antioxidant Mechanisms of Glutathione against Metal-Mediated Oxidative DNA Damage

    Get PDF
    Oxidative damage of DNA strands has been strongly linked with the development of diseases such as certain cancers, cystic fibrosis and Parkinson’s, as well as aging. In intercellular reactions involving hydrogen peroxide endogenous metals have been shown to increase the generation of site-specific base modifications through their formation of reactive oxygen species (ROS). The damage markers measured via HPLC are the 8-hydroxy-2’-deoxyguanosine (8-OHdG) and the dA-N1 oxide markers. The current study deals with the reduced form of the sulfur antioxidant glutathione (GSH) and elucidating its ameliorating effects against ROS formation. Comparative studies with the known radical-scavenging sulfur antioxidant dimethyl sulfoxide (DMSO) have also been performed. The fluorescent probe 2’,7’-dichlorofluorescein (DCF) was used to quantify the ROS production both in the presence and absence of both GSH and DMSO. Metal binding studies were conducted using isothermal titration calorimetry (ITC) in order to better interrogate the nature of the metal ion interactions with GSH. A better understanding of antioxidant mechanisms against oxidative DNA damage will eventually lead to the development of better therapeutics and treatment options against the aforementioned ailments and conditions in the future

    Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides

    Get PDF
    Biomolecule-mediated ZnO synthesis has great potential for the tailoring of ZnO morphology for specific application in biosensors, window materials for display and solar cells, dye-sensitized solar cells (DSSCs), biomedical materials, and photocatalysts due to its specificity and multi-functionality. In this contribution, the effect of a ZnO-binding peptide (ZnO-BP, G-12: GLHVMHKVAPPR) and its GGGC-tagged derivative (GT-16: GLHVMHKVAPPRGGGC) on the growth of ZnO crystals expressing morphologies dependent on the relative growth rates of (0001) and (10 (1) over bar0) planes of ZnO have been studied. The amount of peptide adsorbed was determined by a depletion method using oriented ZnO films grown by Atomic Layer Deposition (ALD), while the adsorption behavior of G-12 and GT-16 was investigated using XPS and a computational approach. Direct evidence was obtained to show that (i) both the ZnO-BP identified by phage display and its GGGC derivative (GT-16) are able to bind to ZnO and modify crystal growth in a molecule and concentration dependent fashion, (ii) plane selectivity for interaction with the (0001) versus the (10 (1) over bar0) crystal planes is greater for GT-16 than G-12; and (iii) specific peptide residues interact with the crystal surface albeit in the presence of charge compensating anions. To our knowledge, this is the first study to provide unambiguous and direct quantitative experimental evidence of the modification of ZnO morphology via (selective and nonselective) adsorption-growth inhibition mechanisms mediated by a ZnO-BP identified from phage display libraries

    Developing Biotemplated Data Storage: Room Temperature Biomineralization of L1<inf>0</inf> CoPt Magnetic Nanoparticles

    Get PDF
    L10 cobalt platinum can be used to record data at approximately sixfold higher densities than it is possible to on existing hard disks. Currently, fabricating L10 CoPt requires high temperatures (≈500 °C) and expensive equipment. One ecological alternative is to exploit biomolecules that template nanomaterials at ambient temperatures. Here, it is demonstrated that a dual affinity peptide (DAP) can be used to biotemplate L10 CoPt onto a surface at room temperature from an aqueous solution. One part of the peptide nucleates and controls the growth of CoPt nanoparticles from solution, and the other part binds to SiO2. A native silicon oxide surface is functionalized with a high loading of the DAP using microcontact printing. The DAP biotemplates a monolayer of uniformly sized and shaped nanoparticles when immobilized on the silicon surface. X-ray diffraction shows that the biotemplated nanoparticles have the L10 CoPt crystal structure, and magnetic measurements reveal stable, multiparticle zones of interaction, similar to those seen in perpendicular recording media. This is the first time that the L10 phase of CoPt has been formed without high temperature/vacuum treatment (e.g., annealing or sputtering) and offers a significant advancement toward developing environmentally friendly, biotemplated materials for use in data storage

    Tiny Medicine: Nanomaterial-Based Biosensors

    Get PDF
    Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies

    The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations

    Get PDF
    Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on the available evidence on the species׳ pharmacology and safety, we highlight ways in which their therapeutic potential can be properly harnessed for possible integration into the country׳s healthcare system. Materials and methods: Ethnobotanical information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants used in diabetes management, in which the place of use and/or sample collection was identified as Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches. Results: The hypoglycemic effect of over a hundred out of the 115 plants reviewed in this paper is backed by preclinical experimental evidence, either in vivo or in vitro. One-third of the plants have been studied for their mechanism of action, while isolation of the bioactive constituent(s) has been accomplished for twenty three plants. Some plants showed specific organ toxicity, mostly nephrotoxic or hepatotoxic, with direct effects on the levels of some liver function enzymes. Twenty eight plants have been identified as in vitro modulators of P-glycoprotein and/or one or more of the cytochrome P450 enzymes, while eleven plants altered the levels of phase 2 metabolic enzymes, chiefly glutathione, with the potential to alter the pharmacokinetics of co-administered drugs. Conclusion: This review, therefore, provides a useful resource to enable a thorough assessment of the profile of plants used in diabetes management so as to ensure a more rational use. By anticipating potential toxicities or possible herb–drug interactions, significant risks which would otherwise represent a burden on the country׳s healthcare system can be avoided
    corecore