546 research outputs found

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Visual servoing of aerial manipulators

    Get PDF
    The final publication is available at link.springer.comThis chapter describes the classical techniques to control an aerial manipulator by means of visual information and presents an uncalibrated image-based visual servo method to drive the aerial vehicle. The proposed technique has the advantage that it contains mild assumptions about the principal point and skew values of the camera, and it does not require prior knowledge of the focal length, in contrast to traditional image-based approaches.Peer ReviewedPostprint (author's final draft

    Joint on-manifold self-calibration of odometry model and sensor extrinsics using pre-integration

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper describes a self-calibration procedure that jointly estimates the extrinsic parameters of an exteroceptive sensor able to observe ego-motion, and the intrinsic parameters of an odometry motion model, consisting of wheel radii and wheel separation. We use iterative nonlinear onmanifold optimization with a graphical representation of the state, and resort to an adaptation of the pre-integration theory, initially developed for the IMU motion sensor, to be applied to the differential drive motion model. For this, we describe the construction of a pre-integrated factor for the differential drive motion model, which includes the motion increment, its covariance, and a first-order approximation of its dependence with the calibration parameters. As the calibration parameters change at each solver iteration, this allows a posteriori factor correction without the need of re-integrating the motion data. We validate our proposal in simulations and on a real robot and show the convergence of the calibration towards the true values of the parameters. It is then tested online in simulation and is shown to accommodate to variations in the calibration parameters when the vehicle is subject to physical changes such as loading and unloading a freight.Peer ReviewedPostprint (author's final draft

    Pose-graph SLAM sparsification using factor descent

    Get PDF
    Since state of the art simultaneous localization and mapping (SLAM) algorithms are not constant time, it is often necessary to reduce the problem size while keeping as much of the original graph’s information content. In graph SLAM, the problem is reduced by removing nodes and rearranging factors. This is normally faced locally: after selecting a node to be removed, its Markov blanket sub-graph is isolated, the node is marginalized and its dense result is sparsified. The aim of sparsification is to compute an approximation of the dense and non-relinearizable result of node marginalization with a new set of factors. Sparsification consists on two processes: building the topology of new factors, and finding the optimal parameters that best approximate the original dense distribution. This best approximation can be obtained through minimization of the Kullback-Liebler divergence between the two distributions. Using simple topologies such as Chow-Liu trees, there is a closed form for the optimal solution. However, a tree is oftentimes too sparse and produces bad distribution approximations. On the contrary, more populated topologies require nonlinear iterative optimization. In the present paper, the particularities of pose-graph SLAM are exploited for designing new informative topologies and for applying the novel factor descent iterative optimization method for sparsification. Several experiments are provided comparing the proposed topology methods and factor descent optimization with state-of-the-art methods in synthetic and real datasets with regards to approximation accuracy and computational cost.Peer ReviewedPostprint (author's final draft

    Dynamic object detection fusing LIDAR data and images

    Get PDF
    Trabajo presentado al X Taller-Escuela de Procesamiento de Imágenes (PI14) celebrado en Guanajuato (México) del 15 al 16 de octubre del 2014.We present a method to segment dynamic objects on point clouds using images and 3D laser data. Per-pixel background classes are adapted online as Gaussian Mixtures independently for each sensor. The learned classes are fused labeling pixels/voxels that belong to either the background, or the dynamic objects We pay special attention in the calibration and synchronization modules to reach accuracy in registration and data association. We show results of people segmentation in indoor scenes using a Velodyne sensor at a high frame-rate.This work acknowledges support from a PhD scholarship from the Mexican Council of Science and Technology (CONACYT) and a Research Stay Grant from the Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR) of The Generalitat of Catalonia (2012 CTP00013) for A. Ortega as well as the Spanish Ministry of Economy and Competitiveness Project PAU+ (DPI-2011-27510).Peer Reviewe

    Potential information fields for mobile robot exploration

    Get PDF
    We present a decision theoretic approach to mobile robot exploration. The method evaluates the reduction of joint path and map entropy and computes a potential information field in robot configuration space using these joint entropy reduction estimates. The exploration trajectory is computed descending on the gradient of this field. The technique uses Pose SLAM as its estimation backbone. Very efficient kernel convolution mechanisms are used to evaluate entropy reduction for each sensor ray, and for each possible robot orientation, taking frontiers and obstacles into account. In the end, the computation of this field on the entire configuration space is shown to be very efficient. The approach is tested in simulations in a pair of publicly available datasets comparing favorably both in quality of estimates and in execution time against an RRT∗-based search for the nearest frontier and also against a locally optimal exploration strategy.This work has been supported by the Spanish Ministry of Economy and Competitiveness under Project DPI-2011-27510 and by the EU Project CargoANTs FP7-605598.Peer Reviewe

    Wire-based tracking using mutual information

    Get PDF
    Presentado al 10th International Symposium on Advances in Robot Kinematics (ARK/2006) celebrado en Lyubljana (Eslovenia).Wire-based tracking devices are an affordable alternative to costly tracking devices. They consist of a fixed base and a platform, attached to the moving object, connected by six wires whose tension is maintained along the tracked trajectory. One important shortcoming of this kind of devices is that they are forced to operate in reduced workspaces so as to avoid singular configurations. Singularities can be eliminated by adding more wires but this causes more wire interferences, and a higher force exerted on the moving object by the measuring device itself. This paper shows how, by introducing a rotating base, the number of wires can be reduced to three, and singularities can be avoided by using an active sensing strategy. This also permits reducing wire interference problems and the pulling force exerted by the device. The proposed sensing strategy minimizes the uncertainty in the location of the platform. Candidate motions of the rotating base are compared selected automatically based on mutual information scores.This work was supported by projects: 'Design and implementation of efficient parallelizable algorithms with applications to robotics and proteomics' (J-00869), 'Planificador de trayectorias para sistemas robotizados de arquitectura arbitraria' (J-00930), 'Integration of robust perception, learning, and navigation systems in mobile robotics' (J-0929), 'Perception, action & cognition through learning of object-action complexes.' (4915).J. Andrade-Cetto completed this work as a Juan de la Cierva Post-doctoral Fellow of the Spanish Ministry of Education and Science under project TIC2003-09291 and was also supported in part by projects DPI 2004-05414, and the EU PACO-PLUS project FP6-2004-IST-4-27657. F. Thomas was partially supported by the Spanish Ministry of Education and Science, projects TIC2003-03396 and DPI 2004-07358, and the Catalan Research Commission, through the Robotics and Control Group.Peer Reviewe

    A stochastic state estimation approach to simultaneous localization and map building

    Get PDF
    This monograph covers theoretical aspects of simultaneous localization and map building for mobile robots, such as estimation stability, nonlinear models for the propagation of uncertainties, temporal landmark compatibility, as well as issues pertaining the coupling of control and SLAM. One of the most relevant topics covered in this monograph is the theoretical formalism of partial observability in SLAM. The authors show that the typical approach to SLAM using a Kalman filter results in marginal filter stability, making the final reconstruction estimates dependent on the initial vehicle estimates. However, by anchoring the map to a fixed landmark in the scene, they are able to attain full observability in SLAM, with reduced covariance estimates. This result earned the first author the EURON Georges Giralt Best PhD Award in its fourth edition, and has prompted the SLAM community to think in new ways to approach the mapping problem. For example, by creating local maps anchored on a landmark, or on the robot initial estimate itself, and then using geometric relations to fuse local maps globally. This monograph is appropriate as a text for an introductory estimation-theoretic approach to the SLAM problem, and as a reference book for people who work in mobile robotics research in general.This work was supported by projects: 'Supervised learning of industrial scenes by means of an active vision equipped mobile robot.' (J-00063), 'Integration of robust perception, learning, and navigation systems in mobile robotics' (J-0929).Peer Reviewe

    Dense entropy decrease estimation for mobile robot exploration

    Get PDF
    Presentado al ICRA 2014 celebrado en Hong Kong del 31 de mayo al 7 de junio.We propose a method for the computation of entropy decrease in C-space. These estimates are then used to evaluate candidate exploratory trajectories in the context of autonomous mobile robot mapping. The method evaluates both map and path entropy reduction and uses such estimates to compute trajectories that maximize coverage whilst min- imizing localization uncertainty, hence reducing map error. Very efficient kernel convolution mechanisms are used to evaluate entropy reduction at each sensor ray, and for each possible robot position and orientation, taking frontiers and obstacles into account. In contrast to most other exploration methods that evaluate entropy reduction at a small number of discrete robot configurations, we do it densely for the entire C-space. The computation of such dense entropy reduction maps opens the window to new exploratory strategies. In this paper we present two such strategies. In the first one we drive exploration through a gradient descent on the entropy decrease field. The second strategy chooses maximal entropy reduction configurations as candidate exploration goals, and plans paths to them using RRT*. Both methods use PoseSLAM as their estimation backbone, and are tested and compared with classical frontier-based exploration in simulations using common publicly available datasets.This work has been supported by the Spanish Ministry of Economy and Competitiveness under Project DPI-2011-27510 and by the EU Project CargoAnts FP7-605598.Peer Reviewe

    Active pose SLAM with RRT*

    Get PDF
    Trabajo presentado al ICRA celebrado en Seattle (US) del 26 al 30 de mayo de 2015.We propose a novel method for robotic exploration that evaluates paths that minimize both the joint path and map entropy per meter traveled. The method uses Pose SLAM to update the path estimate, and grows an RRT* tree to generate the set of candidate paths. This action selection mechanism contrasts with previous appoaches in which the action set was built heuristically from a sparse set of candidate actions. The technique favorably compares agains the classical frontier- based exploration and other Active Pose SLAM methods in simulations in a common publicly available dataset.This work has been supported by the Spanish Ministry of Economy and Competitiveness under project PAU+ DPI-2011-27510 and by the EU Project CargoAnts FP7-605598.Peer Reviewe
    • …
    corecore