2,265 research outputs found

    Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes

    Get PDF
    To disentangle the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity, which allows us to gain in flexibility. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed by taking advantage of distributed computing resources and the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach can adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events

    Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster

    Full text link
    We develop a stochastic modeling approach based on spatial point processes of log-Gaussian Cox type for a collection of around 5000 landslide events provoked by a precipitation trigger in Sicily, Italy. Through the embedding into a hierarchical Bayesian estimation framework, we can use the Integrated Nested Laplace Approximation methodology to make inference and obtain the posterior estimates. Several mapping units are useful to partition a given study area in landslide prediction studies. These units hierarchically subdivide the geographic space from the highest grid-based resolution to the stronger morphodynamic-oriented slope units. Here we integrate both mapping units into a single hierarchical model, by treating the landslide triggering locations as a random point pattern. This approach diverges fundamentally from the unanimously used presence-absence structure for areal units since we focus on modeling the expected landslide count jointly within the two mapping units. Predicting this landslide intensity provides more detailed and complete information as compared to the classically used susceptibility mapping approach based on relative probabilities. To illustrate the model's versatility, we compute absolute probability maps of landslide occurrences and check its predictive power over space. While the landslide community typically produces spatial predictive models for landslides only in the sense that covariates are spatially distributed, no actual spatial dependence has been explicitly integrated so far for landslide susceptibility. Our novel approach features a spatial latent effect defined at the slope unit level, allowing us to assess the spatial influence that remains unexplained by the covariates in the model

    Max-infinitely divisible models and inference for spatial extremes

    Full text link
    For many environmental processes, recent studies have shown that the dependence strength is decreasing when quantile levels increase. This implies that the popular max-stable models are inadequate to capture the rate of joint tail decay, and to estimate joint extremal probabilities beyond observed levels. We here develop a more flexible modeling framework based on the class of max-infinitely divisible processes, which extend max-stable processes while retaining dependence properties that are natural for maxima. We propose two parametric constructions for max-infinitely divisible models, which relax the max-stability property but remain close to some popular max-stable models obtained as special cases. The first model considers maxima over a finite, random number of independent observations, while the second model generalizes the spectral representation of max-stable processes. Inference is performed using a pairwise likelihood. We illustrate the benefits of our new modeling framework on Dutch wind gust maxima calculated over different time units. Results strongly suggest that our proposed models outperform other natural models, such as the Student-t copula process and its max-stable limit, even for large block sizes
    • …
    corecore