5 research outputs found
Different reactions to adverse neighborhoods in games of cooperation
In social dilemmas, cooperation among randomly interacting individuals is
often difficult to achieve. The situation changes if interactions take place in
a network where the network structure jointly evolves with the behavioral
strategies of the interacting individuals. In particular, cooperation can be
stabilized if individuals tend to cut interaction links when facing adverse
neighborhoods. Here we consider two different types of reaction to adverse
neighborhoods, and all possible mixtures between these reactions. When faced
with a gloomy outlook, players can either choose to cut and rewire some of
their links to other individuals, or they can migrate to another location and
establish new links in the new local neighborhood. We find that in general
local rewiring is more favorable for the evolution of cooperation than
emigration from adverse neighborhoods. Rewiring helps to maintain the diversity
in the degree distribution of players and favors the spontaneous emergence of
cooperative clusters. Both properties are known to favor the evolution of
cooperation on networks. Interestingly, a mixture of migration and rewiring is
even more favorable for the evolution of cooperation than rewiring on its own.
While most models only consider a single type of reaction to adverse
neighborhoods, the coexistence of several such reactions may actually be an
optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON
Coevolutionary games - a mini review
Prevalence of cooperation within groups of selfish individuals is puzzling in
that it contradicts with the basic premise of natural selection. Favoring
players with higher fitness, the latter is key for understanding the challenges
faced by cooperators when competing with defectors. Evolutionary game theory
provides a competent theoretical framework for addressing the subtleties of
cooperation in such situations, which are known as social dilemmas. Recent
advances point towards the fact that the evolution of strategies alone may be
insufficient to fully exploit the benefits offered by cooperative behavior.
Indeed, while spatial structure and heterogeneity, for example, have been
recognized as potent promoters of cooperation, coevolutionary rules can extend
the potentials of such entities further, and even more importantly, lead to the
understanding of their emergence. The introduction of coevolutionary rules to
evolutionary games implies, that besides the evolution of strategies, another
property may simultaneously be subject to evolution as well. Coevolutionary
rules may affect the interaction network, the reproduction capability of
players, their reputation, mobility or age. Here we review recent works on
evolutionary games incorporating coevolutionary rules, as well as give a
didactic description of potential pitfalls and misconceptions associated with
the subject. In addition, we briefly outline directions for future research
that we feel are promising, thereby particularly focusing on dynamical effects
of coevolutionary rules on the evolution of cooperation, which are still widely
open to research and thus hold promise of exciting new discoveries.Comment: 24 two-column pages, 10 figures; accepted for publication in
BioSystem
Evolutionary games on graphs
Game theory is one of the key paradigms behind many scientific disciplines
from biology to behavioral sciences to economics. In its evolutionary form and
especially when the interacting agents are linked in a specific social network
the underlying solution concepts and methods are very similar to those applied
in non-equilibrium statistical physics. This review gives a tutorial-type
overview of the field for physicists. The first three sections introduce the
necessary background in classical and evolutionary game theory from the basic
definitions to the most important results. The fourth section surveys the
topological complications implied by non-mean-field-type social network
structures in general. The last three sections discuss in detail the dynamic
behavior of three prominent classes of models: the Prisoner's Dilemma, the
Rock-Scissors-Paper game, and Competing Associations. The major theme of the
review is in what sense and how the graph structure of interactions can modify
and enrich the picture of long term behavioral patterns emerging in
evolutionary games.Comment: Review, final version, 133 pages, 65 figure
Grand challenges in social physics: in pursuit of moral behavior
Methods of statistical physics have proven valuable for studying the evolution of cooperation in social dilemma games. However, recent empirical research shows that cooperative behavior in social dilemmas is only one kind of a more general class of behavior, namely moral behavior, which includes reciprocity, respecting others' property, honesty, equity, efficiency, as well as many others. Inspired by these experimental works, we here open up the path toward studying other forms of moral behavior with methods of statistical physics. We argue that this is a far-reaching direction for future research that can help us answer fundamental questions about human sociality. Why did our societies evolve as they did? What moral principles are more likely to emerge? What happens when different moral principles clash? Can we predict the break out of moral conflicts in advance and contribute to their solution? These are amongst the most important questions of our time, and methods of statistical physics could lead to new insights and contribute toward finding answers