2,329 research outputs found

    Entanglement combing

    Full text link
    We show that all multi-partite pure states can, under local operations, be transformed into bi-partite pairwise entangled states in a "lossless fashion": An arbitrary distinguished party will keep pairwise entanglement with all other parties after the asymptotic protocol - decorrelating all other parties from each other - in a way that the degree of entanglement of this party with respect to the rest will remain entirely unchanged. The set of possible entanglement distributions of bi-partite pairs is also classified. Finally, we point out several applications of this protocol as a useful primitive in quantum information theory.Comment: 5 pages, 1 figure, replaced with final versio

    Quantum repeated games

    Get PDF
    In a two-stage repeated classical game of prisoners' dilemma the knowledge that both players will defect in the second stage makes the players to defect in the first stage as well. We find a quantum version of this repeated game where the players decide to cooperate in the first stage while knowing that both will defect in the second.Comment: Revised in the light of referee's comments. Latex, 10 pages, 1 eps figure, submitted to Physics Letters

    Interbank network and bank bailouts: Insurance mechanism for non-insured creditors? : [Version 20 Februar 2013]

    Get PDF
    This paper presents a theory that explains why it is beneficial for banks to engage in circular lending activities on the interbank market. Using a simple network structure, it shows that if there is a non-zero bailout probability, banks can significantly increase the expected repayment of uninsured creditors by entering into cyclical liabilities on the interbank market before investing in loan portfolios. Therefore, banks are better able to attract funds from uninsured creditors. Our results show that implicit government guarantees incentivize banks to have large interbank exposures, to be highly interconnected, and to invest in highly correlated, risky portfolios. This can serve as an explanation for the observed high interconnectedness between banks and their investment behavior in the run-up to the subprime mortgage crisis

    On the experimental feasibility of continuous-variable optical entanglement distillation

    Get PDF
    Entanglement distillation aims at preparing highly entangled states out of a supply of weakly entangled pairs, using local devices and classical communication only. In this note we discuss the experimentally feasible schemes for optical continuous-variable entanglement distillation that have been presented in [D.E. Browne, J. Eisert, S. Scheel, and M.B. Plenio, Phys. Rev. A 67, 062320 (2003)] and [J. Eisert, D.E. Browne, S. Scheel, and M.B. Plenio, Annals of Physics (NY) 311, 431 (2004)]. We emphasize their versatility in particular with regards to the detection process and discuss the merits of the two proposed detection schemes, namely photo-detection and homodyne detection, in the light of experimental realizations of this idea becoming more and more feasible.Comment: 5 pages, 5 figures, contribution to conference proceeding

    Positive Wigner functions render classical simulation of quantum computation efficient

    Get PDF
    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulatable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.Comment: 7 pages, minor change
    • …
    corecore