39 research outputs found

    StomateTutor™: An Introduction to Stomatal Control of Gas Exchange in Plants

    Full text link
    This is a HyperCard implementation which includes Pascal programs. HyperCard, which requires at least 1 Megabyte of memory, must be supplied by the user. The system disk must include the Geneva 10 pt font. When using, open the HyperCard stack StomateTutor which coordinates the remaining files (StomateTutorl-3 and the two Pascal programs). When you run StomateTutor the first time with your file configuration, you must locate the Pore Width and Diffusion applications used in Modules 1 and 2, respectively

    Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Get PDF
    13 págs.; 7 figs.; 8 tabs.© 2015 AIP Publishing LLC. The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.F.F.S. and P.L.V. acknowledge the Portuguese Foundation for Science and Technology (FCT-MEC) through Grant Nos. SFRH/BPD/68979/2010 and SFRH/BSAB/105792/2014, respectively, the research Grant Nos. PTDC/FIS-ATO/1832/ 2012 and UID/FIS/00068/2013. P.L.V. also acknowledges his Visiting Research Fellow position at Flinders University, Adelaide, South Australia. The Patrimoine of the University of Liège, the Fonds National de la Recherche Scientifique, and the Fonds de la Recherche Fondamentale Collective of Belgium have also supported this research. E.L. and R.F.C.N. thank CNPq (Brazil) and the Science Without Borders Programme for opportunities to study abroad. The authors wish to acknowledge the beam time at the ISA synchrotron at Aarhus University, Denmark. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (Grant No. FP7/2007-2013) CALIPSO under Grant Agreement No. 312284. D.B.J. thanks the Australian Research Council for financial support provided through a Discovery Early Career Research Award. M.J.B. also thanks the Australian Research Council for some financial support, while M.J.B. and M.C.A.L. acknowledge the Brazilian agencies CNPq and FAPEMIG for financial support. F.B. and G.G. acknowledge partial financial support from the Spanish Ministry MINECO (Project No. FIS2012-31230) and the EU COST Action No. CM1301 (CELINA). Finally, R.F.C., M.T.do N.V., M.H.F.B., and M.A.P.L. acknowledge support from the Brazilian agency CNPq.Peer Reviewe

    Gap-filling eddy covariance methane fluxes:Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

    Get PDF
    Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET)

    Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    Get PDF
    Abstract: The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate,C4H8O2, is presented over the energy range 4.5−10.7 eV (275.5−116.0 nm). Valence and Rydberg transitionsand their associated vibronic series observed in the photoabsorption spectrum, have beenassigned in accordance with new ab initio calculations of the vertical excitation energiesand oscillator strengths. Also, the photoabsorption cross sections have been used tocalculate the photolysis lifetime of this ester in the upper stratosphere(20−50 km). Calculationshave also been carried out to determine the ionisation energies and fine structure of thelowest ionic state of ethyl acetate and are compared with a newly recorded photoelectronspectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the firstphotoelectron band of this molecule for the first time

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Firmness measurement of peach by impact force response*

    No full text
    The impact force response of a peach impacting on a metal flat-surface was considered as nondestructive determination of firmness. The objectives were to analyze the effect of firmness, drop height, fruit mass, and impact orientation on the impact force parameters, and to establish a relationship between the impact force parameter and firmness. The effect of fruit firmness, drop height and fruit mass on the impact force parameters (coefficient of restitution, percentage of energy absorbed, and coefficient of force-time) was evaluated. The study found that the coefficient of restitution, percentage of energy absorbed, and force-time impact coefficient were significantly affected by fruit ripeness, but not affected by drop height, impact position (fruit cheek), and mass. The percentage of absorbed energy increased with ripeness, while the force-time impact coefficient and coefficient of restitution decreased with ripeness. Relationships were obtained between the three impact characteristic parameters (force-time impact coefficient, coefficient of restitution, and percentage of energy absorbed) and peach firmness using a polynomial model (R 2=0.932), S model (R 2=0.910), and exponential model (R 2=0.941), respectively

    Dissociation dynamics of core excited iron carbonyl - nitrosyl

    No full text
    SIGLEAvailable at INIST (FR), Document Supply Service, under shelf-number : RM 1565 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore