10 research outputs found

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Efficient use of execution resources in multicore processor architectures

    No full text
    As the microprocessor industry embraces multicore architectures, inherently parallel applications benefit directly as they easily transform into sets of homogeneous parallel threads. However, many applications do not t this model. These applications include legacy binaries compiled for a single thread of execution and inherently serial applications. The inability of these two kinds of applications to exploit multicore architectures has created a crisis for the microprocessor industry : customers have come to expect significant performance improvements in all of their application every processor generation, but recent multicore architectures have failed to meet those expectations for many applications. This dissertation explores ways in which these applications can run efficiently on multi core platforms. The performance of legacy binaries compiled for a single thread of execution can be improved through automatic parallelization. We introduce a new technique to automatically parallelize binaries as they are executing. The parallelization technique leverages the benefits of hardware transactional memory, a synchronization mechanism enabling optimistic concurrency. Our technique exploits this to parallelize code that a traditional parallelizing compiler would be unable to transform due to potential memory aliasing. Applications with fundamentally serial code can benefits from core customization. The more heterogeneous the cores are, the more likely that a given application will nd a core on which it runs efficiently. We investigate two forms of heterogeneity : that created on homogeneous hardware by unbalanced resource assignment, and heterogeneity created by hardware asymmetry. We first consider a homogeneous multicore system composed of multithreading cores. Often the best schedules on such a system are unbalanced. We propose a set of novel scheduling algorithms that consider unbalanced schedules to nd good application-to-core assignments. We consider objective functions of both performance and energy. We also explore how applications can benefit from diverse Isms by considering heterogeneous-ISA multicore systems. We propose a new technique to rapidly migrate a thread among cores of different Isms, allowing applications to take advantage of hardware heterogeneity for performance gain or energy saving

    Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

    No full text
    Altres ajuts: American Kidney Fund; AstraZeneca; Chinook Therapeutics; Natera; Otsuka; Reata Pharmaceuticals; Sanofi.Numerous genes for monogenic kidney diseases with classical patterns of inheritance, as well as genes for complex kidney diseases that manifest in combination with environmental factors, have been discovered. Genetic findings are increasingly used to inform clinical management of nephropathies, and have led to improved diagnostics, disease surveillance, choice of therapy, and family counseling. All of these steps rely on accurate interpretation of genetic data, which can be outpaced by current rates of data collection. In March of 2021, Kidney Diseases: Improving Global Outcomes (KDIGO) held a Controversies Conference on "Genetics in Chronic Kidney Disease (CKD)" to review the current state of understanding of monogenic and complex (polygenic) kidney diseases, processes for applying genetic findings in clinical medicine, and use of genomics for defining and stratifying CKD. Given the important contribution of genetic variants to CKD, practitioners with CKD patients are advised to "think genetic," which specifically involves obtaining a family history, collecting detailed information on age of CKD onset, performing clinical examination for extrarenal symptoms, and considering genetic testing. To improve the use of genetics in nephrology, meeting participants advised developing an advanced training or subspecialty track for nephrologists, crafting guidelines for testing and treatment, and educating patients, students, and practitioners. Key areas of future research, including clinical interpretation of genome variation, electronic phenotyping, global representation, kidney-specific molecular data, polygenic scores, translational epidemiology, and open data resources, were also identified

    Genome-wide Association Studies Identify Genetic Loci Associated with Albuminuria in Diabetes

    Get PDF
    Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and associate with increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes mellitus and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (p=2.4*10(-10)). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. SNPs at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in average UACR per minor allele was 21% for HS6ST1 and 13% for RAB38/CTSC (p=6.3*10(-7) and 5.8*10(-7), respectively). Experiments using streptozotocin-treated diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout vs. control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared to controls. The loci identified here confirm known and highlight novel pathways influencing albuminuria

    Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification

    No full text

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    No full text
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore