751 research outputs found

    Características físicas dos sistemas convectivos de mesoescala que afetaram o Rio Grande do Sul em 2006

    Get PDF
    It was studied the seasonal physics features of the Mesoscale Convective Systems that reached Rio Grande do Sul (RS) State (MCS RS) in 2006, using ForTrACC tool (Forecasting and Tracking of Active Cloud Clusters). Channel 4 GOES-12 (Geostationary Operational Environmental Satellite) images from 2006 year, with 4 km x 4 km spatial resolution in the subsatellite point and ½ hour temporal resolution were used. These images were provided by DSA/CPTEC/INPE (Divisão de Satélites e Sistemas Ambientais do Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais) and were the data basis to the ForTrACC tool. The results showed that: i) most MCS RS occurred in the warmest quarters and showed lifetime between 6 and 12h, ii) MCS RS with higher lifetime covered larger areas, iii) the largest and most long MCS RS were observed in JAS (Jul, Aug, Sep); iv) MCS RS presented the three phases of their life cycle distributed throughout the day; v) MCS RS had preferential initiation over the continent, and vi) MCS RS presented mean preferential trajectory from west to east.Estudou-se as características físicas sazonais dos Sistemas Convectivos de Mesoescala que afetaram o Estado do Rio Grande do Sul-RS (SCM RS) no ano de 2006, utilizando a técnica ForTrACC (Forecasting and Tracking of Active Cloud Clusters). Foram utilizadas imagens brutas do satélite GOES-12 (Geostationary Operational Environmental Satellite) do canal 4, com resolução espacial no seu ponto subsatélite de 4 km x 4 km e resolução temporal de ½ hora, do período de 01/01/2006 a 31/12/2006. Essas imagens foram fornecidas pela Divisão de Satélites e Sistemas Ambientais do Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais (DSA/CPTEC/INPE) e serviram como base de dados para a utilização da técnica ForTrACC. Os resultados mostraram que: i) a maioria dos SCM RS ocorreu nos trimestres mais quentes do ano e apresentou tempo de vida entre 6 e 12h; ii) SCM RS com maior tempo de vida cobriram áreas maiores; iii) SCM RS maiores e mais longos foram observados em JAS (jul, ago, set); iv) os SCM RS apresentaram as 3 fases do seu ciclo de vida distribuída ao longo do dia; v) os SCM RS tiveram iniciação preferencial sobre o continente e vi) os SCM RS apresentaram trajetória média preferencial de oeste para leste

    Uma Oficina sobre o Conteúdo de Ligações Químicas Realizada pelo Pibid Química

    Get PDF
    Este texto tem o objetivo de apresentar o planejamento e a análise de uma oficina desenvolvida em turmas de estudantes de uma escola pública, associada ao conteúdo de ligações químicas. Ela foi planejada e desenvolvida pelo grupo Pibid-Química de uma Universidade Federal, onde a análise dos resultados acerca das atividades desenvolvidas foi realizada com base em registros e reflexões de pibidianas. Os resultados do texto contemplam: o relato sobre a confecção de uma oficina, que permitiu a construção de um dispositivo que busca auxiliar na atividade experimental para o ensino de ligações químicas; e os registros das intervenções, que denotam o interesse dos estudantes pela Química, pela oficina e pela compreensão dos fenômenos observados e explicados

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    Get PDF
    © 2016 International Society for Microbial Ecology All rights reserved. Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success

    The Cult Statues of the Pantheon

    Get PDF
    This article reconsiders the possible statuary of the Pantheon in Rome, both in its original Augustan form and in its later phases. It argues that the so-called ‘Algiers Relief’ has wrongly been connected with the Temple of Mars Ultor and is in fact evidence of the association of the Divus Julius with Mars and Venus in the Pantheon of Agrippa, a juxtaposition which reflects the direction of Augustan ideology in the 20s b.c. and the building's celestial purpose. This triple statue group became the focus of the later Pantheon, and its importance is highlighted by the hierarchized system of architectural ornament of the present building

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914
    corecore