107 research outputs found
‘Better late than never’: the interplay between green technology and age for firm growth
This paper investigates the relationship between green/non-green technologies and firm growth. By combining the literature on eco-innovations, industrial organisation and entrepreneurial studies, we examine the dependence of this relationship on the pace at which firms grow and the age of the firm. From a dataset of 5498 manufacturing firms in Italy for the period of 2000–2008, longitudinal fixed effects quantile models are estimated, in which the firm’s age is set to moderate the effects of green and non-green patents on employment growth. We find that the positive effect of green technologies on growth is greater than that of non-green technologies. However, this result does not apply to struggling and rapidly growing firms. With fast-growing (above the median) firms, age moderates the growth effect of green technologies. Inconsistent with the extant literature, this moderation effect is positive: firm experience appears important for the growth benefits of green technologies, possibly relative to the complexity of their management
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Proteomic Analysis Reveals That Iron Availability Alters the Metabolic Status of the Pathogenic Fungus Paracoccidioides brasiliensis
Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways
Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty
The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease
Reply to 'Comment on 'Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy''.
Background: Recent phase III clinical trials have established the superiority of the anti-PD-1 antibodies pembrolizumab and nivolumab over the anti-CTLA-4 antibody ipilimumab in the first-line treatment of patients with advanced melanoma. Ipilimumab will be considered for second-line treatment after the failure of anti-PD-1 therapy. Methods: We retrospectively identified a cohort of 40 patients with metastatic melanoma who received single-agent anti-PD-1 therapy with pembrolizumab or nivolumab and were treated on progression with ipilimumab at a dose of 3 mg kg(-1) for a maximum of four doses. Results: Ten percent of patients achieved an objective response to ipilimumab, and an additional 8% experienced prolonged (>6 months) stable disease. Thirty-five percent of patients developed grade 3-5 immune-related toxicity associated with ipilimumab therapy. The most common high-grade immune-related toxicity was diarrhoea. Three patients (7%) developed grade 3-5 pneumonitis leading to death in one patient. Conclusions: Ipilimumab therapy can induce responses in patients who fail the anti-PD-1 therapy with response rates comparable to previous reports. There appears to be an increased frequency of high-grade immune-related adverse events including pneumonitis that warrants close surveillance
Constraints on the origin of cosmic rays above 1018 eV from large scale anisotropy searches in data of the Pierre Auger Observatory
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 1018 eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions
Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression
Demyelination in mild cognitive impairment suggests progression path to Alzheimer's disease.
The preclinical Alzheimer's disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination
- …
