570 research outputs found
Observations of the Crab Nebula with H.E.S.S. Phase II
The High Energy Stereoscopic System (H.E.S.S.) phase I instrument was an
array of four mirror area Imaging Atmospheric Cherenkov
Telescopes (IACTs) that has very successfully mapped the sky at photon energies
above GeV. Recently, a telescope was added to
the centre of the existing array, which can be operated either in standalone
mode or jointly with the four smaller telescopes. The large telescope lowers
the energy threshold for gamma-ray observations to several tens of GeV, making
the array sensitive at energies where the Fermi-LAT instrument runs out of
statistics. At the same time, the new telescope makes the H.E.S.S. phase II
instrument. This is the first hybrid IACT array, as it operates telescopes of
different size (and hence different trigger rates) and different field of view.
In this contribution we present results of H.E.S.S. phase II observations of
the Crab Nebula, compare them to earlier observations, and evaluate the
performance of the new instrument with Monte Carlo simulations.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Shelterbelt of fast growing tree species for mitigation of wind erosion and carbon sequestration in an open landscape of northeast Germany
PosterThe aim of this project (running 2010–2014) was to investigate the effects of a shelterbelt of fast-growing trees in a short rotation system on an adjacent wind-exposed field in the federal state of Brandenburg in terms of soil erosion protection, carbon sequestration in the soil and increasing landscape structuring and richness, biodiversity and microclimate. Moreover, it should be examined whether the energetic use of fast-growing trees is an economical alternative for farmers to the cultivation of annual crops, and general recommendations for practical use shall be derived from the project results.
This project is financed by the Volkswagen AG. It is part of the larger framework ‘Biomasse für Sunfuel’ wherein the federal states of Lower Saxony, Hesse and Brandenburg and the Volkswagen AG join forces to achieve new knowledge for the development and introduction of synthetic biofuels.
At the study site in Casekow, county Uckermark, NE Brandenburg, a short rotation coppice plantation (SRC) was established in spring 2010, dividing a 90-hectare field in north-south direction, the main wind direction being west.
The shelterbelt of SRC has a width of 40 m and a length of 800 m. Different tree species and clones as well as different planting densities were considered. The aim was to manage the middle part of the shelterbelt with wider spaced poplars in a longer rotation (5–8 years), while its edges, composed of densely planted poplars and willows, should be harvested in a short rotation (3–4 years), in order to provide a continuous (but not identical) windbreak effect on the leeward adjacent arable land.
The presentation will introduce and discuss results of the project e.g. biomass data from the different tree species and clones, results from wind measurements on the adjacent field and results from an ornithological investigation in the shelterbelt
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
Context. Recently, the high-energy (HE, 0.1-100 GeV) -ray emission
from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered
to be modulated with a 10.3-day period, making it the first extra-galactic
-ray binary.
Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV)
-ray emission and the search for modulation of the VHE signal with the
orbital period of the binary system.
Methods. LMC P3 has been observed with the High Energy Stereoscopic System
(H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has
been folded with the known orbital period of the system in order to test for
variability of the emission. Energy spectra are obtained for the orbit-averaged
data set, and for the orbital phase bin around the VHE maximum.
Results. VHE -ray emission is detected with a statistical
significance of 6.4 . The data clearly show variability which is
phase-locked to the orbital period of the system. Periodicity cannot be deduced
from the H.E.S.S. data set alone. The orbit-averaged luminosity in the
TeV energy range is erg/s. A luminosity of erg/s is reached during 20% of the orbit. HE and VHE
-ray emissions are anti-correlated. LMC P3 is the most luminous
-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
Water use and productivity of poplar and willow in SRC plantations in NE Germany along gradients of groundwater depth
PosterFast-growing tree species planted as short rotation coppice (SRC) may provide multiple ecosystem services, particularly in agroforestry systems, such as wind and soil erosion control, soil fertility protection, carbon sequestration, increasing landscape structural richness and biodiversity, on top of supplying a renewable source of biomass and energy. In the federal state of Brandenburg, NE Germany, a large proportion of the arable land is characterized by sandy soils and relatively shallow groundwater levels of 1–2 m. Besides, precipitation during the growing season is typically scarce (? 300 mm). Therefore, a deep-rooting, woody plant cover in SRC systems may sustain dry spells with only minor or no reductions in yield and additionally offer benefits to adjacent annual crops. However, the productivity of SRC may vary greatly depending on soil type, nutrient and soil water availability.
We studied water use and productivity of willow and poplar trees in SRC plantations in northeastern Brandenburg in relation to soil water availability, atmospheric conditions and stand structure on sites with gradients in groundwater depth. Water use was measured directly as xylem sap flow on up to 20 trees per site and species. Daily water use of poplar and willow shoots averaged over the growing season was 0.4–8.7 and 0.2–3.1 kg d-1, respectively, for trees aged 3–5 years. Water use was reduced on drier sites during summer drought. Preliminary results for the water use efficiency, the amount of woody aboveground biomass produced per kg of water used, ranged from 1.2 to 10 (poplar) and from 4 to 13 g kg-1 (willow shoots). The diameter increment of trees with access to groundwater lasted up to 7 weeks longer than for trees without access to groundwater. These and further results will be discussed in terms of water availability and tree and stand structure
Detailed spectral and morphological analysis of the shell type SNR RCW 86
Aims: We aim for an understanding of the morphological and spectral
properties of the supernova remnant RCW~86 and for insights into the production
mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods:
We analyzed High Energy Spectroscopic System data that had increased
sensitivity compared to the observations presented in the RCW~86 H.E.S.S.
discovery publication. Studies of the morphological correlation between the
0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions
have been performed as well as broadband modeling of the spectral energy
distribution with two different emission models. Results:We present the first
conclusive evidence that the TeV gamma-ray emission region is shell-like based
on our morphological studies. The comparison with 2-5~keV X-ray data reveals a
correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is
best described by a power law with an exponential cutoff at TeV and a spectral index of ~. A static
leptonic one-zone model adequately describes the measured spectral energy
distribution of RCW~86, with the resultant total kinetic energy of the
electrons above 1 GeV being equivalent to 0.1\% of the initial kinetic
energy of a Type I a supernova explosion. When using a hadronic model, a
magnetic field of ~100G is needed to represent the measured data.
Although this is comparable to formerly published estimates, a standard
E spectrum for the proton distribution cannot describe the gamma-ray
data. Instead, a spectral index of ~1.7 would be required, which
implies that ~erg has been transferred into
high-energy protons with the effective density cm^-3. This
is about 10\% of the kinetic energy of a typical Type Ia supernova under the
assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
Myonuclear Transcriptional Dynamics in Response to Exercise Following Satellite Cell Depletion
Skeletal muscle is composed of post-mitotic myofibers that form a syncytium containing hundreds of myonuclei. Using a progressive exercise training model in the mouse and single nucleus RNA-sequencing (snRNA-seq) for high-resolution characterization of myonuclear transcription, we show myonuclear functional specialization in muscle. After 4 weeks of exercise training, snRNA-seq reveals that resident muscle stem cells, or satellite cells, are activated with acute exercise but demonstrate limited lineage progression while contributing to muscle adaptation. In the absence of satellite cells, a portion of nuclei demonstrates divergent transcriptional dynamics associated with mixed-fate identities compared with satellite cell replete muscles. These data provide a compendium of information about how satellite cells influence myonuclear transcription in response to exercise
Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, ggammaa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic fieldFil: Medina, Maria Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: H.E.S. S. collaboration
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …
