Shelterbelt of fast growing tree species for mitigation of wind erosion and carbon sequestration in an open landscape of northeast Germany

Abstract

PosterThe aim of this project (running 2010–2014) was to investigate the effects of a shelterbelt of fast-growing trees in a short rotation system on an adjacent wind-exposed field in the federal state of Brandenburg in terms of soil erosion protection, carbon sequestration in the soil and increasing landscape structuring and richness, biodiversity and microclimate. Moreover, it should be examined whether the energetic use of fast-growing trees is an economical alternative for farmers to the cultivation of annual crops, and general recommendations for practical use shall be derived from the project results. This project is financed by the Volkswagen AG. It is part of the larger framework ‘Biomasse für Sunfuel’ wherein the federal states of Lower Saxony, Hesse and Brandenburg and the Volkswagen AG join forces to achieve new knowledge for the development and introduction of synthetic biofuels. At the study site in Casekow, county Uckermark, NE Brandenburg, a short rotation coppice plantation (SRC) was established in spring 2010, dividing a 90-hectare field in north-south direction, the main wind direction being west. The shelterbelt of SRC has a width of 40 m and a length of 800 m. Different tree species and clones as well as different planting densities were considered. The aim was to manage the middle part of the shelterbelt with wider spaced poplars in a longer rotation (5–8 years), while its edges, composed of densely planted poplars and willows, should be harvested in a short rotation (3–4 years), in order to provide a continuous (but not identical) windbreak effect on the leeward adjacent arable land. The presentation will introduce and discuss results of the project e.g. biomass data from the different tree species and clones, results from wind measurements on the adjacent field and results from an ornithological investigation in the shelterbelt

    Similar works