219 research outputs found

    The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    Get PDF
    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600–800 MPa and possibly 800–1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200–350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions

    Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer.

    Get PDF
    The mechanisms by which mitochondrial metabolism supports cancer anabolism remain unclear. Here, we found that genetic and pharmacological inactivation of pyruvate dehydrogenase A1 (PDHA1), a subunit of the pyruvate dehydrogenase complex (PDC), inhibits prostate cancer development in mouse and human xenograft tumor models by affecting lipid biosynthesis. Mechanistically, we show that in prostate cancer, PDC localizes in both the mitochondria and the nucleus. Whereas nuclear PDC controls the expression of sterol regulatory element-binding transcription factor (SREBF)-target genes by mediating histone acetylation, mitochondrial PDC provides cytosolic citrate for lipid synthesis in a coordinated manner, thereby sustaining anabolism. Additionally, we found that PDHA1 and the PDC activator pyruvate dehydrogenase phosphatase 1 (PDP1) are frequently amplified and overexpressed at both the gene and protein levels in prostate tumors. Together, these findings demonstrate that both mitochondrial and nuclear PDC sustain prostate tumorigenesis by controlling lipid biosynthesis, thus suggesting this complex as a potential target for cancer therapy

    Prodigious submarine landslides during the inception and early growth of volcanic islands

    Get PDF
    Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth’s surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard

    Angiocrine polyamine production regulates adiposity.

    Get PDF
    Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid β-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.We thank members of the Endothelial Pathobiology and Microenvironment Group for helpful discussions. We thank the CERCA Program/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. The research leading to these results has received funding from la Fundación BBVA (Ayuda Fundacion BBVA a Equipos de Investigación Científica 2019, PR19BIOMET0061) and from SAF2017-82072-ERC from Ministerio de Ciencia, Innovación y Universidades (MCIU) (Spain). The laboratory of M.G. is also supported by the research grants SAF2017-89116R-P (FEDER/EU) co-funded by European Regional Developmental Fund (ERDF), a Way to Build Europe and PID2020-116184RB-I00 from MCEI; by the Catalan Government through the project 2017-SGR; PTEN Research Foundation (BRR-17-001); La Caixa Foundation (HR19-00120 and HR21-00046); by la Asociación Española contra el Cancer-Grupos Traslacionales (GCTRA18006CARR, also to A.C.); European Foundation for the Study of Diabetes/Lilly research grant, also to M.C.); and by the People Programme (Marie Curie Actions; grant agreement 317250) of the European Union’s Seventh Framework Programme FP7/2007-2013 and the Marie Skłodowska-Curie (grant agreement 675392) of the European Union’s Horizon 2020 research. The laboratory of A.C. is supported by the Basque Department of Industry, Tourism and Trade (Elkartek) and the department of education (IKERTALDE IT1106-16), the MCIU (PID2019-108787RB-I00 (FEDER/ EU); Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks SAF2016-81975-REDT), La Caixa Foundation (ID 100010434), under the agreement LCF/PR/HR17, the Vencer el Cancer foundation and the European Research Council (ERC) (consolidator grant 819242). CIBERONC was co-funded with FEDER funds and funded by Instituto de Salud Carlos III (ISCIII). The laboratory of M.C. is supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 725004) and CERCA Programme/Generalitat de Catalunya (M.C.). The laboratory of D.S. is supported by research grants from MINECO (SAF2017- 83813-C3-1-R, also to L.H., cofounded by the ERDF), CIBEROBN (CB06/03/0001), Government of Catalonia (2017SGR278) and Fundació La Marató de TV3 (201627- 30). The laboratory of R.N. is supported by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (RTI2018-099413-B-I00 and and RED2018-102379-T), Xunta de Galicia (2016-PG057 and 2020-PG015), ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 810331), Fundación BBVA, Fundacion Atresmedia and CIBEROBN, which is an initiative of the ISCIII of Spain, which is supported by FEDER funds. The laboratory of J.A.V. is supported by research grants from MICINN (RTI2018-099250-B100) and by La Caixa Foundation (ID 100010434, LCF/PR/HR17/52150009). P.M.G.-R. is supported by ISCIII grant PI15/00701 cofinanced by the ERDF, A Way to Build Europe. Personal support was from Marie Curie ITN Actions (E.M.), Juan de la Cierva (IJCI-2015-23455, P.V.), CONICYT fellowship from Chile (S.Z.), Vetenskapsradet (Swedish Research Council, 2018-06591, L.G.) and NCI K99/R00 Pathway to Independence Award (K99CA245122, P. Castel).S

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Stratification and therapeutic potential of PML in metastatic breast cancer.

    Get PDF
    Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.The work of A.C. is supported by the Ramón y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), Health (2012111086) and Education (PI2012-03), Marie Curie (277043), Movember Foundation (GAP1), ISCIII (PI10/01484, PI13/00031), FERO (VIII Fellowship) and ERC (336343). N.M.-M. and P.A. are supported by the Spanish Association Against Cancer (AECC), AECC JP Vizcaya and Guipuzcoa, respectively. J.U. and F.S. are Juan de la Cierva Researchers (MINECO). L.A., A.A.-A. and L.V.-J. are supported by the Basque Government of education. M.L.-M.C. acknowledges SAF2014-54658-R and Asociación Española contra el Cancer. R.B. acknowledges Spanish MINECO (BFU2014-52282-P, Consolider BFU2014-57703-REDC), the Departments of Education and Industry of the Basque Government (PI2012/42) and the Bizkaia County. M.S., V.S. and J.B. acknowledge Banco Bilbao Vizcaya Argentaria (BBVA) Foundation (Tumour Biomarker Research Program). M.S. and J.B. are supported by NIH grant P30 CA008748. M.dM.V. is supported by the Institute of Health Carlos III (PI11/02251, PI14/01328) and Basque Government, Health Department (2014111145). A.M. is supported by ISCIII (CP10/00539, PI13/02277) and Marie Curie CIG 2012/712404. V.S. is supported by the SCIII (PI13/01714, CP14/00228), the FERO Foundation and the Catalan Agency AGAUR (2014 SGR 1331). R.R.G. research support is provided by the Spanish Ministry of Science and Innovation grant SAF2013-46196, BBVA Foundation, the Generalitat de Catalunya (2014 SGR 535), Institució Catalana de Recerca i Estudis Avançats, the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (SAF2013-46196).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1259

    Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer

    Get PDF
    Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkbl alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1(K781), was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination

    Regulation of mTORC1 Signaling by pH

    Get PDF
    BACKGROUND: Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. METHODOLOGY/FINDINGS: We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1-TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1-TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. CONCLUSIONS: This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions

    Genomewide Analysis of Inherited Variation Associated with Phosphorylation of PI3K/AKT/mTOR Signaling Proteins

    Get PDF
    While there exists a wealth of information about genetic influences on gene expression, less is known about how inherited variation influences the expression and post-translational modifications of proteins, especially those involved in intracellular signaling. The PI3K/AKT/mTOR signaling pathway contains several such proteins that have been implicated in a number of diseases, including a variety of cancers and some psychiatric disorders. To assess whether the activation of this pathway is influenced by genetic factors, we measured phosphorylated and total levels of three key proteins in the pathway (AKT1, p70S6K, 4E-BP1) by ELISA in 122 lymphoblastoid cell lines from 14 families. Interestingly, the phenotypes with the highest proportion of genetic influence were the ratios of phosphorylated to total protein for two of the pathway members: AKT1 and p70S6K. Genomewide linkage analysis suggested several loci of interest for these phenotypes, including a linkage peak for the AKT1 phenotype that contained the AKT1 gene on chromosome 14. Linkage peaks for the phosphorylated:total protein ratios of AKT1 and p70S6K also overlapped on chromosome 3. We selected and genotyped candidate genes from under the linkage peaks, and several statistically significant associations were found. One polymorphism in HSP90AA1 was associated with the ratio of phosphorylated to total AKT1, and polymorphisms in RAF1 and GRM7 were associated with the ratio of phosphorylated to total p70S6K. These findings, representing the first genomewide search for variants influencing human protein phosphorylation, provide useful information about the PI3K/AKT/mTOR pathway and serve as a valuable proof of concept for studies integrating human genomics and proteomics
    corecore