1,469 research outputs found

    Multiple imputation methods for longitudinal blood pressure measurements from the Framingham Heart Study

    Get PDF
    Missing data are a great concern in longitudinal studies, because few subjects will have complete data and missingness could be an indicator of an adverse outcome. Analyses that exclude potentially informative observations due to missing data can be inefficient or biased. To assess the extent of these problems in the context of genetic analyses, we compared case-wise deletion to two multiple imputation methods available in the popular SAS package, the propensity score and regression methods. For both the real and simulated data sets, the propensity score and regression methods produced results similar to case-wise deletion. However, for the simulated data, the estimates of heritability for case-wise deletion and the two multiple imputation methods were much lower than for the complete data. This suggests that if missingness patterns are correlated within families, then imputation methods that do not allow this correlation can yield biased results

    Modeling and Testing for Joint Association Using a Genetic Random Field Model

    Full text link
    Substantial progress has been made in identifying single genetic variants predisposing to common complex diseases. Nonetheless, the genetic etiology of human diseases remains largely unknown. Human complex diseases are likely influenced by the joint effect of a large number of genetic variants instead of a single variant. The joint analysis of multiple genetic variants considering linkage disequilibrium (LD) and potential interactions can further enhance the discovery process, leading to the identification of new disease-susceptibility genetic variants. Motivated by the recent development in spatial statistics, we propose a new statistical model based on the random field theory, referred to as a genetic random field model (GenRF), for joint association analysis with the consideration of possible gene-gene interactions and LD. Using a pseudo-likelihood approach, a GenRF test for the joint association of multiple genetic variants is developed, which has the following advantages: 1. considering complex interactions for improved performance; 2. natural dimension reduction; 3. boosting power in the presence of LD; 4. computationally efficient. Simulation studies are conducted under various scenarios. Compared with a commonly adopted kernel machine approach, SKAT, GenRF shows overall comparable performance and better performance in the presence of complex interactions. The method is further illustrated by an application to the Dallas Heart Study.Comment: 17 pages, 4 tables, the paper has been published on Biometric

    Identifying susceptibility genes by using joint tests of association and linkage and accounting for epistasis

    Get PDF
    Simulated Genetic Analysis Workshop14 data were analyzed by jointly testing linkage and association and by accounting for epistasis using a candidate gene approach. Our group was unblinded to the "answers." The 48 single-nucleotide polymorphisms (SNPs) within the six disease loci were analyzed in addition to five SNPs from each of two non-disease-related loci. Affected sib-parent data was extracted from the first 10 replicates for populations Aipotu, Kaarangar, and Danacaa, and analyzed separately for each replicate. We developed a likelihood for testing association and/or linkage using data from affected sib pairs and their parents. Identical-by-descent (IBD) allele sharing between sibs was explicitly modeled using a conditional logistic regression approach and incorporating a covariate that represents expected IBD allele sharing given the genotypes of the sibs and their parents. Interactions were accounted for by performing likelihood ratio tests in stages determined by the highest order interaction term in the model. In the first stage, main effects were tested independently, and in subsequent stages, multilocus effects were tested conditional on significant marginal effects. A reduction in the number of tests performed was achieved by prescreening gene combinations with a goodness-of-fit chi square statistic that depended on mating-type frequencies. SNP-specific joint effects of linkage and association were identified for loci D1, D2, D3, and D4 in multiple replicates. The strongest effect was for SNP B03T3056, which had a median p-value of 1.98 × 10(-34). No two- or three-locus effects were found in more than one replicate

    Segregation and linkage analysis for longitudinal measurements of a quantitative trait

    Get PDF
    We present a method for using slopes and intercepts from a linear regression of a quantitative trait as outcomes in segregation and linkage analyses. We apply the method to the analysis of longitudinal systolic blood pressure (SBP) data from the Framingham Heart Study. A first-stage linear model was fit to each subject's SBP measurements to estimate both their slope over time and an intercept, the latter scaled to represent the mean SBP at the average observed age (53.7 years). The subject-specific intercepts and slopes were then analyzed using segregation and linkage analysis. We describe a method for using the standard errors of the first-stage intercepts and slopes as weights in the genetic analyses. For the intercepts, we found significant evidence of a Mendelian gene in segregation analysis and suggestive linkage results (with LOD scores ≥ 1.5) for specific markers on chromosomes 1, 3, 5, 9, 10, and 17. For the slopes, however, the data did not support a Mendelian model, and thus no formal linkage analyses were conducted

    The impact of air pollution on hospital admissions: Evidence from Italy

    Get PDF
    In this paper we study the impact of air pollution on hospital admissions for chronic obstructive pulmonary disease for 103 Italian provinces, over the period from 2004 to 2009. We use information on annual mean concentrations of carbon monoxide, nitrogen dioxide, particulate matter, and ozone measured at monitoring station level to build province-level indicators of pollution. Hence, we estimate a regression model for hospital admissions, where we allow our aggregate measures of pollution to be subject to measurement error and correlated with the error term. We also adopt standard errors for estimates that are robust to serial and spatial correlation in the error term, to allow for temporal persistence and geographical concentration of unobservable risk factors.We find that higher levels of particulate matter are associated with higher levels of hospitalisation for children, while ozone plays an important role in explaining hospital admissions of the elderly. Other factors that appear to have an effect on hospital admissions for chronic obstructive pulmonary disease are precipitation and provincial unemployment rate

    A novel approach to simulate gene-environment interactions in complex diseases

    Get PDF
    Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study
    corecore