1,956 research outputs found

    Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids

    Get PDF
    Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade's final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety

    Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, North-East Atlantic. We (1) used a habitat use-availability analysis to determine whether gannets preferentially dived at fronts, and (2) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. Whilst both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives), and deeper U-shaped dives with an active pursuit phase of at least three seconds (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasises the importance of cross-disciplinary research when attempting to understand marine ecosystems.This work was funded by a PhD studentship to SLC by the Natural Environment Research Council (NERC; NE/J500380/1), Natural Resources Wales (Seabirds Cymru) and a NERC grant (NE/H007466/1)

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    Pediatrics

    Get PDF
    OBJECTIVESTo describe the prevalence and secular trends of high weight-for-length among infants (ages, 3\u201323 months) in the biennial US Department of Agriculture Women, Infants, and Children Program and Participants Characteristic (WIC-PC) Survey from 2000 through 2014 (n = 16 927 120).METHODSWeight-for-length was considered to be \u201chigh\u201d if it was 652 SDs above the sex-and age-specific median in the World Health Organization growth standards. Poisson regression was used to calculate adjusted prevalence ratios.RESULTSThe overall prevalence of high weight-for-length increased from 13.4% in 2000 to 14.5% in 2004, remained constant until 2010, and then decreased by >2 percentage points (to 12.3%) through 2014. The prevalence of high weight-for-length was associated with sex (higher among boys), race-ethnicity (highest among American Indians/Alaskan Natives), and with both age (positive) and family income (inverse). The secular trends, however, were fairly similar within categories of these variables. From 2010 to 2014, the prevalence of high weight-for-length decreased in 40 states and 3 (of 5) US territories, with the largest decreases seen in Puerto Rico ( 129 percentage points) and Kentucky ( 127 percentage points), and the largest increase (+2 percentage points) seen in West Virginia.CONCLUSIONSAlthough the current results cannot be considered representative of infants in the populations, the prevalence of a high weight-for-length has decreased among infants in WIC-PC since 2010. These decreases were similar across categories of most characteristics, but there were substantial differences across jurisdictions, possibly reflecting differences in policy and local programs that target maternal and infant health.20162018-01-01T00:00:00ZCC999999/Intramural CDC HHS/United States27965380PMC5359001777

    Temporal patterns in habitat use by small cetaceans at an oceanographically dynamic marine renewable energy test site in the Celtic Sea

    Get PDF
    Shelf-seas are highly dynamic and oceanographically complex environments, which likely influences the spatio-temporal distributions of marine megafauna such as marine mammals. As such, understanding natural patterns in habitat use by these animals is essential when attempting to ascertain and assess the impacts of anthropogenically induced disturbances, such as those associated with marine renewable energy installations (MREIs). This study uses a five year (2009–2013) passive acoustics (C-POD) dataset to examine the use of an oceanographically dynamic marine renewable energy test site by small cetaceans, dolphins (unspecified delphinids) and harbour porpoises Phocoena phocoena, in the southern Celtic Sea. To examine how temporal patterns in habitat use across the site related to oceanographic changes occurring over broad seasonal scales as well as those driven by fine scale (bi-weekly) localised processes (that may be masked by seasonal trends), separate analyses were conducted using (1) all daily animal detection rates spanning the entire five year dataset and (2) daily animal detection rates taken only during the summer months (defined as mid-June to mid-October) of 2010 (when continuous monitoring was carried out at multiple discrete locations across the site). In both instances, generalised additive mixed effects models (GAMMs) were used to link detection rates to a suite of environmental variables representative of the oceanography of the region. We show that increased harbour porpoise detection rates in the late winter/early spring (January–March) are associated with low sea surface temperatures (SST), whilst peaks in dolphin detection rates in the summer (July–September) coincide with increased SSTs and the presence of a tidal-mixing front. Moreover, across the summer months of 2010, dolphin detection rates were found to respond to small scale changes in SST and position in the spring-neap cycle, possibly reflective of a preference for the stratified waters immediately offshore of the front. Together, these findings suggest that habitat use by small cetaceans within shelf-seas is temporally variable, species specific and likely driven by complex bottom-up processes. As such, the effective conservation management of shelf-seas requires that we understand the dynamic complexities of these systems and the species that inhabit them. In particular, we emphasise the need for a good understanding of the natural drivers of habitat use by marine megafauna before the potential impacts of anthropogenically induced disturbances, such as those associated with the construction, maintenance and operation of MREIs, can be assessed

    MALT1 is an intrinsic regulator of regulatory T cells

    Get PDF
    Regulatory T cells (Tregs) are crucial for the maintenance of immunological self-tolerance and their absence or dysfunction can lead to autoimmunity. However, the molecular pathways that govern Treg biology remain obscure. In this study, we show that the nuclear factor-κB signalling mediator mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an important novel regulator of both Tregs originating in the thymus (‘natural’ or nTregs) and Tregs induced to differentiate from naive thymocyte helper (Th) cells in the periphery (‘induced’ or iTregs). Our examination of mice deficient for MALT1 revealed that these mutants have a reduced number of total Tregs. In young Malt1−/− mice, nTregs are totally absent and iTreg are diminished in the periphery. Interestingly, total Treg numbers increase in older Malt1−/− mice as well as in Malt1−/− mice subjected to experimentally induced inflammation. iTregs isolated from WT and Malt1−/− mice were indistinguishable with respect to their ability to suppress the activities of effector T cells, but Malt1−/− iTregs expressed higher levels of Toll-like receptor (TLR) 2. Treatment of WT and Malt1−/− Th cells in vitro with the TLR2 ligand Pam3Cys strongly enhanced the induction and proliferation of Malt1−/− iTregs. Our data suggest that MALT1 supports nTreg development in the thymus but suppresses iTreg induction in the periphery during inflammation. Our data position MALT1 as a key molecule that contributes to immune tolerance at steady-state while facilitating immune reactivity under stress conditions.This work was supported by grants by the Canadian Institutes of Health Research (to TWM). DB is supported by the ATTRACT Programme of the National Research Fund Luxembourg (FNR).This study was further supported by the Alexander von Humboldt Foundation (SKA2010) and the German Research Council (LA2558/3-1)

    Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes

    Get PDF
    Although microarray analysis has provided information regarding the dynamics of gene expression during development of the mouse lung, no extensive correlations have been made to the levels of corresponding protein products. Here, we present a global survey of protein expression during mouse lung organogenesis from embryonic day E13.5 until adulthood using gel-free two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry (MudPIT). Mathematical modeling of the proteomic profiles with parallel DNA microarray data identified large groups of gene products with statistically significant correlation or divergence in coregulation of protein and transcript levels during lung development. We also present an integrative analysis of mRNA and protein expression in Nmyc loss- and gain-of-function mutants. This revealed a set of 90 positively and negatively regulated putative target genes. These targets are evidence that Nmyc is a regulator of genes involved in mRNA processing and a repressor of the imprinted gene Igf2r in the developing lung
    corecore