585 research outputs found

    The development of path integration: combining estimations of distance and heading

    Get PDF
    Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection

    Investigating the effect of artists’ paint formulation on degradation rates of TiO2-based oil paints

    Get PDF
    This study reports on the effect of artists’ paint formulation on degradation rates of TiO2-based oil paints. Titanium white oil paint exists in a multitude of different recipes, and the effect of the formulation on photocatalytic binder degradation kinetics is unknown. These formulations contain, among others, one or both titanium dioxide polymorphs, zinc oxide, the extenders barium sulfate or calcium carbonate and various additives. Most research performed on the photocatalytic degradation process focusses on pure titanium white-binder mixtures and thus does not take into account the complete paint system. Since photocatalytic oil degradation is a process initiated by the absorption of UV light, any ingredient or combination of ingredients influencing the light scattering and absorption properties of the paint films may affect the degradation rate. In this study three sets of experiments are conducted, designed using the design of experiments (DoE) approach, to screen for the most important formulation factors influencing the degradation rate. The benefits of using DoE, compared to a more traditional ‘one factor at a time approach’ are robustness, sample efficiency, the ability of evaluate mixtures of multiple components as well as the ability to evaluate factor interactions. The three sets of experiments investigate (1) the influence of the TiO2 type, (2) the impact of different mixtures of two types of TiO2, ZnO and the additive aluminum stearate and (3) the influence of common extenders in combination with photocatalytic TiO2, on the photocatalytic degradation of the oil binder. The impact of the formulation on the degradation rate became apparent, indicating the shortcoming of oversimplified studies. The protective effect of photostable TiO2 pigments, even in a mixture with photocatalytic TiO2 pigments, as well as the negative effect of extenders was demonstrated. Furthermore, the ambiguous role of ZnO (photocatalytic or not) and aluminum stearate is highlighted. Neither can be ignored in a study of degradation behavior of modern oil paints and require further investigation

    Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    Get PDF
    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions

    Equitable and effective area‐based conservation: towards the conserved areas paradigm

    Get PDF
    In 2018, the Parties to the Convention on Biological Diversity (CBD) adopted a decision on protected areas and other effective area-based conservation measures (OECMs). It contains the definition of an OECM and related scientific and technical advice that has broadened the scope of governance authorities and areas that can be engaged and recognised in global conservation efforts. The voluntary guidance on OECMs and protected areas, also included in the decision, promotes the use of diverse, effective and equitable governance models, the integration of protected areas and OECMs into wider landscapes and seascapes, and mainstreaming of biodiversity conservation across sectors. Taken as a whole, the advice and voluntary guidance provides further clarity about the CBD Parties’ understanding of what constitutes equitable and effective area-based conservation measures within and beyond protected areas and provides standardised criteria with which to measure and report areas’ attributes and performance. This policy perspective suggests that this CBD decision represents further evidence of the evolution from the ‘new paradigm for protected areas’ to a broader ‘conserved areas paradigm’ that embodies good governance, equity and effective conservation outcomes and is inclusive of a diversity of contributions to conservation within and beyond protected areas

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons
    corecore