9 research outputs found

    biological mediated ag nanoparticles from barleria longiflora for antimicrobial activity and photocatalytic degradation using methylene blue

    Get PDF
    AbstractThe present study focuses on extraction of green synthesized silver nanoparticles (Ag-NPs) from Barleria longiflora L. leaves for antibacterial and photocatalytic activities. The extracted Ag-NPs have been characterized by XRD, FTIR, FE-SEM with EDX, HR-TEM accompanied SAED pattern and UV-Visible absorption spectroscopic techniques. Spectral studies confirmed the UV-Visible absorption spectrum of the Ag-NPs at a wavelength of 443 nm and a good crystalline nature with a face-centered cubic crystal structure using XRD spectrum. Surface topography and the presence of Ag in the prepared sample have been confirmed from SEM and EDX measurements. Various functional groups present in the sample have been examined using FT-IR spectroscopic analysis. A homogeneous dispersion of spherical form nanoparticles with a usual size of 2.4 nm was confirmed by visualization using FE-SEM and HR-TEM. Moreover, Ag-NPs stimulate a strong inhibition of Enterococcus sp., Streptococcus sp, Bacillus megaterium, Pseudomonas p..

    MoS<sub>2</sub>-ZnO Nanocomposite Mediated Immunosensor for Non-Invasive Electrochemical Detection of IL8 Oral Tumor Biomarker

    No full text
    In order to support biomolecule attachment, an effective electrochemical transducer matrix for biosensing devices needs to have many specialized properties, including quick electron transfer, stability, high surface area, biocompatibility, and the presence of particular functional groups. Enzyme-linked immunosorbent assays, gel electrophoresis, mass spectrometry, fluorescence spectroscopy, and surface-enhanced Raman spectroscopy are common techniques used to assess biomarkers. Even though these techniques provide precise and trustworthy results, they cannot replace clinical applications because of factors such as detection time, sample amount, sensitivity, equipment expense, and the need for highly skilled individuals. For the very sensitive and targeted electrochemical detection of the salivary oral cancer biomarker IL8, we have created a flower-structured molybdenum disulfide-decorated zinc oxide composite on GCE (interleu-kin-8). This immunosensor shows very fast detection; the limit of detection (LOD) for interleukin-8 (IL8) detection in a 0.1 M phosphate buffer solution (PBS) was discovered to be 11.6 fM, while the MoS2/ZnO nanocomposite modified glassy carbon electrode (GCE) demonstrated a high catalytic current linearly from 500 pg to 4500 pg mL−1 interleukin-8 (IL8). Therefore, the proposed biosensor exhibits excellent stability, high accuracy sensitivity, repeatability, and reproducibility and shows the acceptable fabrication of the electrochemical biosensors to detect the ACh in real sample analysis

    An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media

    No full text
    corecore