1,687 research outputs found

    Lowest Order Constrained Variational Calculation of Structure Properties of Protoneutron Star

    Full text link
    We calculate the structure properties of protoneutron star such as equation of state, maximum mass, radius and temperature profile using the lowest order constrained variational method. We show that the mass and radius of protoneutron star decrease by decreasing both entropy and temperature. For the protoneutron star, it is shown that the temperature is nearly constant in the core and drops rapidly near the crust.Comment: 14 pages, 12 figures. Int. J. Theor. Phys. (2008) in pres

    Calculation of the Structure Properties of a Strange Quark Star in the Presence of Strong Magnetic Field Using a Density Dependent Bag Constant

    Full text link
    In this article we have calculated the structure properties of a strange quark star in static model in the presence of a strong magnetic field using MIT bag model with a density dependent bag constant. To parameterize the density dependence of bag constant, we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter. By calculating the equation of state of strange quark matter, we have shown that the pressure of this system increases by increasing both density and magnetic field. Finally, we have investigated the effect of density dependence of bag constant on the structure properties of strange quark star.Comment: 23 pages, 9 figures, Res. in Astron. Astrophys. (2012) accepte

    LOCV calculations for polarized liquid 3He^3{He} with the spin-dependent correlation

    Full text link
    We have used the lowest order constrained variational (LOCV) method to calculate some ground state properties of polarized liquid 3He^{3}He at zero temperature with the spin-dependent correlation function employing the Lennard-Jones and Aziz pair potentials. We have seen that the total energy of polarized liquid 3He^{3}He increases by increasing polarization. For all polarizations, it is shown that the total energy in the spin-dependent case is lower than the spin-independent case. We have seen that the difference between the energies of spin-dependent and spin-independent cases decreases by increasing polarization. We have shown that the main contribution of the potential energy comes from the spin-triplet state.Comment: 14 pages, 5 figures. Int. J. Mod. Phys. B (2008) in pres

    Computation of the structure of magnetized strange quark star

    Full text link
    In this work, we have calculated some properties of the spin polarized strange quark matter (SQM) in a strong magnetic field at zero temperature using the MIT bag model. We have shown that the equation of state of spin polarized SQM is stiffer than that of the unpolarized case. We have also computed the structure properties of the spin polarized strange quark star (SQS) and have found that the presence of magnetic field leads to a more stable SQS compared to the unpolarized SQS.Comment: 23 pages, 13 figures, 2 tables Res. Astron. Astrophys. (2011) in pres

    Saturation properties of nuclear matter in the presence of strong magnetic field

    Full text link
    Different saturation properties of cold symmetric nuclear matter in the strong magnetic field have been considered. We have seen that for magnetic fields about B>3×1017 GB> 3 \times 10 ^ {17}\ G, {for both cases with and without nucleon anomalous magnetic moments}, the saturation density and saturation energy grow by increasing the magnetic field. It is indicated that the magnetic susceptibility of symmetric nuclear matter becomes negative showing the diamagnetic response especially at B<3×1017 GB< 3 \times 10 ^ {17}\ G. We have found that for the nuclear matter, the magnitude of orbital magnetization reaches the higher values comparing to the spin magnetization. Our results for the incompressibility show that at high enough magnetic fields, i.e. B>3×1017 GB> 3 \times 10 ^ {17}\ G, {the softening of equation of state caused by Landau quantization is overwhelmed by stiffening due to the magnetization of nuclear matter.} We have shown that the effects of strong magnetic field on nuclear matter may affect the constraints on the equation of state of symmetric nuclear matter obtained applying the experimental observable.Comment: 16 pages, 1 table, 7 figures, European Physical Journal A 52 (2016) accepte
    • …
    corecore