9 research outputs found

    A cross-institutional analysis of the effects of broadening trainee professional development on research productivity

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brandt, P. D., Sturzenegger Varvayanis, S., Baas, T., Bolgioni, A. F., Alder, J., Petrie, K. A., Dominguez, I., Brown, A. M., Stayart, C. A., Singh, H., Van Wart, A., Chow, C. S., Mathur, A., Schreiber, B. M., Fruman, D. A., Bowden, B., Wiesen, C. A., Golightly, Y. M., Holmquist, C. E., Arneman, D., Hall, J. D., Hyman, L. E., Gould, K. L., Chalkley, R., Brennwald, P. J., Layton, R. L. A cross-institutional analysis of the effects of broadening trainee professional development on research productivity. Plos Biology, 19(7), (2021): e3000956, https://doi.org/10.1371/journal.pbio.3000956.PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce.Funding sources included the Common Fund NIH Director’s Biomedical Research Workforce Innovation Broadening Experiences in Scientific Training (BEST) Award. The following institutional NIH BEST awards (alphabetical by institution) included: DP7OD020322 (Boston University; AFB, ID, BMS, LEH); DP7OD020316 (University of Chicago; CAS); DP7OD018425 (Cornell University; SSV); DP7OD018428 (Virginia Polytechnic Institute; AVW, BB); DP7OD020314 (Rutgers University; JA); DP7OD020315 (University of Rochester; TB); DP7OD018423 (Vanderbilt University; KAP, AMB, KLG, RC); DP7OD020321 (University of California, Irvine; HS, DAF); DP7OD020317 (University of North Carolina, Chapel Hill; PDB, PJB, RLL); DP7 OD018427 (Wayne State University; CSC, AM). National Institutes of Health (NIH) General Medical Sciences - Science of Science Policy Approach to Analyzing and Innovating the Biomedical Research Enterprise (SCISIPBIO) Award (GM-19-011) - 1R01GM140282-01 (University of North Carolina at Chapel Hill; RLL, PDB, PJB)

    A cross-institutional analysis of the effects of broadening trainee professional development on research productivity

    No full text
    PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and non-profit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the BEST awardee institutions included career panels, skill-building workshops, job-searching workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from ten BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Furthermore, a few institutions demonstrated a positive correlation between participation in career and professional development activities and productivity. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce. Note: Institutional data has been de-identified and each file corresponds to institutional labels consistent with publication manuscript (e.g., "Institution A" in manuscript corresponds to file "ZA TTD data deidentified"; Brandt et al, 2021). Columns for each institutional data set include: coded trainee ID; trainee participation data and dose-bin assigned; time to degree and/or defense; and number of publications (total, first author, and/or pub metric composite score)

    Exploring Issues of User Model Transparency and Proactive Behaviour in an Office Environment Control System.

    No full text
    It is important that systems that exhibit proactive behaviour do so in a way that does not surprise or frustrate the user. Consequently, it is desirable for such systems to be both personalised and designed in such a way as to enable the user to scrutinise her user model (part of which should hold the rules describing the behaviour of the system). This article describes on-going work to investigate the design of a prototype system that can learn a given user’s behaviour in an office environment in order to use the inferred rules to populate a user model and support appropriate proactive behaviour (e.g. turning on the user’s fan under appropriate conditions). We explore the tension between user control and proactive services and consider issues related to the design of appropriate transparency with a view to supporting user comprehensibility of system behaviour. To this end, our system enables the user to scrutinise and possibly over-ride the ‘IF-THEN’ rules held in her user model. The system infers these rules from the context history (effectively a data set generated using a variety of sensors) associated with the user by using a fuzzy-decision-tree-based algorithm that can provide a confidence level for each rule in the user model. The evolution of the system has been guided by feedback from a number of real-life users in a university department. A questionnaire study has yielded supplementary results concerning the extent to which the approach taken meets users’ expectations and requirements

    Latitudinal limits to the predicted increase of the peatland carbon sink with warming

    Get PDF
    The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century

    Inhibin at 90: From Discovery to Clinical Application, a Historical Review

    No full text
    corecore