104 research outputs found

    Time course of striatal DeltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment.

    Get PDF
    DFosB-like proteins are particularly stable transcription factors that accumulate in the brain in response to chronic perturbations. In this study we have compared the time-course of striatal FosB/DFosB-like immunoreactivity and prodynorphin mRNA expression after discontinuation of chronic cocaine treatment to intact rats and chronic L-DOPA treatment to unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. The animals were killed between 3 h and 16 days after the last drug injection. In both treatment paradigms, the druginduced FosB/DFosB immunoreactivity remained significantly elevated in the caudate putamen even at the longest withdrawal period examined. The concomitant upregulation of prodynorphin mRNA, a target of DFosB, paralleled the time-course of DFosB-like immunoreactivity in the 6-OHDA-lesion/L-DOPA model, but was more transient in animals treated with cocaine. These results suggest that DFosB-like proteins have exceptional in vivo stability. In the dopamine-denervated striatum, these proteins may exert sustained effects on the expression of their target genes long after discontinuation of L-DOPA pharmacotherapy

    The locus coeruleus Is Directly Implicated in L-DOPA-Induced Dyskinesia in Parkinsonian Rats: An Electrophysiological and Behavioural Study

    Get PDF
    Despite being the most effective treatment for Parkinson's disease, L-DOPA causes a development of dyskinetic movements in the majority of treated patients. L-DOPA-induced dyskinesia is attributed to a dysregulated dopamine transmission within the basal ganglia, but serotonergic and noradrenergic systems are believed to play an important modulatory role. In this study, we have addressed the role of the locus coeruleus nucleus (LC) in a rat model of L-DOPA-induced dyskinesia. Single-unit extracellular recordings in vivo and behavioural and immunohistochemical approaches were applied in rats rendered dyskinetic by the destruction of the nigrostriatal dopamine neurons followed by chronic treatment with L-DOPA. The results showed that L-DOPA treatment reversed the change induced by 6-hydroxydopamine lesions on LC neuronal activity. The severity of the abnormal involuntary movements induced by L-DOPA correlated with the basal firing parameters of LC neuronal activity. Systemic administration of the LC-selective noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine did not modify axial, limb, and orolingual dyskinesia, whereas chemical destruction of the LC with ibotenic acid significantly increased the abnormal involuntary movement scores. These results are the first to demonstrate altered LC neuronal activity in 6-OHDA lesioned rats treated with L-DOPA, and indicate that an intact noradrenergic system may limit the severity of this movement disorder

    Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations.

    Get PDF
    The standard pharmacological treatment for Parkinson's disease using the dopamine precursor levodopa is unfortunately limited by gradual development of disabling involuntary movements for which the underlying causes are poorly understood. Here we show that levodopa-induced dyskinesia in hemiparkinsonian rats is strongly associated with pronounced 80 Hz local field potential oscillations in the primary motor cortex following levodopa treatment. When this oscillation is interrupted by application of a dopamine antagonist onto the cortical surface the dyskinetic symptoms disappear. The finding that abnormal cortical oscillations are a key pathophysiological mechanism calls for a revision of the prevailing hypothesis that links levodopa-induced dyskinesia to an altered sensitivity to dopamine only in the striatum. Apart from having important implications for the treatment of Parkinson's disease, the discovered pathophysiological mechanism may also play a role in several other psychiatric and neurological conditions involving cortical dysfunction

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Tail-pinch stimulus

    No full text

    6-OH Dopamine Rat Model

    No full text

    Pathophysiology of L-DOPA-Induced Dyskinesia in Parkinson's Disease

    No full text

    Molecular Mechanisms of L-DOPA-Induced Dyskinesia

    No full text
    The dopamine (DA) precursor, 3,4-dihydroxyphenyl-L-alanine (L-DOPA), is the most effective treatment for Parkinson's disease (PD), but causes dyskinesias (abnormal involuntary movements) in the vast majority of patients. There is a wide consensus that L-DOPA-induced dyskinesia (LID) depends on both pre- and postsynaptic disturbances of the nigrostriatal DA transmission. Presynaptically, LID is associated with abnormal DA release and defective DA clearance, which converge to cause large swings in brain DA levels concomitant with the medication. Postsynaptically, LID is associated with a dysregulation of intracellular signaling and gene expression downstream of the D1 DA receptor. These phenomena are particularly well studied in the striatum and are thus the main topic of this chapter. In addition, the chapter reviews studies that have revealed associations between LID and different types of abnormalities in glutamatergic and GABAergic transmission within cortico-basal ganglia circuits

    L-DOPA-induced dyskinesia: cellular mechanisms and approaches to treatment.

    No full text
    L-DOPA-induced dyskinesia (LID) is a common complication of the treatment of Parkinson's disease, and its precise mechanisms have long remained unknown. Rodent models of LID provide a tool to dissect the impact of specific factors on the development and expression of dyskinetic movements. This short review will summarize recent findings from rodent studies that have consolidated and considerably expanded our mechanistic understanding of LID. Based on the experimental findings, the review will propose a chart of possible treatment options acting on different pathophysiological levels
    corecore