862 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    The spatial range of peripheral collinear facilitation

    Get PDF
    Contrast detection thresholds for a central Gabor patch (target) can be modulated by the presence of co-oriented and collinear high contrast Gabors flankers. In foveal vision collinear facilitation can be observed for target-to-flankers relative distances beyond two times the wavelength (λ) of the Gabor's carrier, while for shorter relative distances (<2λ) there is suppression. These modulatory influences seem to disappear after 12λ. In this study, we measured contrast detection thresholds for different spatial frequencies (1, 4 and 6 cpd) and target-to-flankers relative distances ranging from 6 to 16λ, but with collinear configurations presented in near periphery at 4° of eccentricity. Results showed that in near periphery collinear facilitation extends beyond 12λ for the higher spatial frequencies tested (4 and 6 cpd), while it decays already at 10λ for the lowest spatial frequency used (i.e., 1 cpd). In addition, we found that increasing the spatial frequency the peak of collinear facilitation shifts towards larger target-to-flankers relative distances (expressed as multiples of the stimulus wavelength), an effect never reported neither for near peripheral nor for central vision. The results suggest that the peak and the spatial extent of collinear facilitation in near periphery depend on the spatial frequency of the stimuli used

    Context Matters: The Illusive Simplicity of Macaque V1 Receptive Fields

    Get PDF
    Even in V1, where neurons have well characterized classical receptive fields (CRFs), it has been difficult to deduce which features of natural scenes stimuli they actually respond to. Forward models based upon CRF stimuli have had limited success in predicting the response of V1 neurons to natural scenes. As natural scenes exhibit complex spatial and temporal correlations, this could be due to surround effects that modulate the sensitivity of the CRF. Here, instead of attempting a forward model, we quantify the importance of the natural scenes surround for awake macaque monkeys by modeling it non-parametrically. We also quantify the influence of two forms of trial to trial variability. The first is related to the neuron’s own spike history. The second is related to ongoing mean field population activity reflected by the local field potential (LFP). We find that the surround produces strong temporal modulations in the firing rate that can be both suppressive and facilitative. Further, the LFP is found to induce a precise timing in spikes, which tend to be temporally localized on sharp LFP transients in the gamma frequency range. Using the pseudo R[superscript 2] as a measure of model fit, we find that during natural scene viewing the CRF dominates, accounting for 60% of the fit, but that taken collectively the surround, spike history and LFP are almost as important, accounting for 40%. However, overall only a small proportion of V1 spiking statistics could be explained (R[superscript 2]~5%), even when the full stimulus, spike history and LFP were taken into account. This suggests that under natural scene conditions, the dominant influence on V1 neurons is not the stimulus, nor the mean field dynamics of the LFP, but the complex, incoherent dynamics of the network in which neurons are embedded.National Institutes of Health (U.S.) (K25 NS052422-02)National Institutes of Health (U.S.) (DP1 ODOO3646

    Measurement of triple gauge-boson couplings at 172 GeV

    Get PDF
    The triple gauge-boson couplings, Awp, Aw and Abp, have been measured using 34 semileptonically and 54 hadronically decaying WW candidate events. The events were selected in the data recorded during 1996 with the ALEPH detector at 172 GeV, corresponding to an integrated luminosity of 10.65 pb^-1. The triple gauge-boson couplings have been measured using optimal observables constructed from kinematic information of WW events. The results are in agreement with the Standard Model expectation

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe

    Searches for neutral Higgs bosons in e+ee^{+}e^{-} collisions at centre-of-mass energies from 192 to 202 GeV

    Get PDF
    Searches for neutral Higgs bosons are performed with the 237 pb^-1 of data collected in 1999 by the ALEPH detector at LEP, for centre-of-mass energies between 191.6 and 201.6 GeV. These searches apply to Higgs bosons within the context of the Standard Model and its minimal supersymmetric extension (MSSM) as well as to invisibly decaying Higgs bosons. No evidence of a signal is seen. A lower limit on the mass of the Standard Model Higgs boson of 107.7 GeV/c^2 at 95% confidence level is set. In the MSSM, lower limits of 91.2 and 91.6 GeV/c^2 are derived for the masses of the neutral Higgs bosons h and A, respectively. For a Higgs boson decaying invisibly and produced with the Standard Model cross section, masses below 106.4 GeV/c^2 are excluded

    Shannon and Renyi Entropies to Classify Effects of Mild Traumatic Brain Injury on Postural Sway

    Get PDF
    Background: Mild Traumatic Brain Injury (mTBI) has been identified as a major public and military health concern both in the United States and worldwide. Characterizing the effects of mTBI on postural sway could be an important tool for assessing recovery from the injury. Methodology/Principal Findings: We assess postural sway by motion of the center of pressure (COP). Methods for data reduction include calculation of area of COP and fractal analysis of COP motion time courses. We found that fractal scaling appears applicable to sway power above about 0.5 Hz, thus fractal characterization is only quantifying the secondary effects (a small fraction of total power) in the sway time series, and is not effective in quantifying long-term effects of mTBI on postural sway. We also found that the area of COP sensitively depends on the length of data series over which the COP is obtained. These weaknesses motivated us to use instead Shannon and Renyi entropies to assess postural instability following mTBI. These entropy measures have a number of appealing properties, including capacity for determination of the optimal length of the time series for analysis and a new interpretation of the area of COP. Conclusions: Entropy analysis can readily detect postural instability in athletes at least 10 days post-concussion so that it appears promising as a sensitive measure of effects of mTBI on postural sway

    Measurement of the W mass by direct reconstruction in e+ee^+ e^- collisions at 172 GeV

    Get PDF
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 10.65~pb1^{-1} collected with the ALEPH detector at a mean centre-of-mass energy of 172.09 \GEV. The invariant mass distribution of simulated events are fitted to the experimental distributions and the following W masses are obtained: WWqqqqmW=81.30+0.47(stat.)+0.11(syst.)GeV/c2WW \to q\overline{q}q\overline{q } m_W = 81.30 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WWlνqq(l=e,μ)mW=80.54+0.47(stat.)+0.11(syst.)GeV/c2WW \to l\nu q\overline{q}(l=e,\mu) m_W = 80.54 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WWτνqqmW=79.56+1.08(stat.)+0.23(syst.)GeV/C62WW \to \tau\nu q\overline{q} m_W = 79.56 +- 1.08(stat.) +- 0.23(syst.) GeV/C62. The statistical errors are the expected errors for Monte Carlo samples of the same integrated luminosity as the data. The combination of these measurements gives: mW=80.80+0.11(syst.)+0.03(LEPenergy)GeV/2m_W = 80.80 +- 0.11(syst.) +- 0.03(LEP energy) GeV/^2
    corecore