15 research outputs found

    Spread Supersymmetry

    Full text link
    In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan and environmental constraints on the dark matter density may exclude a large range of \tilde{m} from the reheating temperature after inflation down to values that yield a LSP mass of order a TeV. After selection effects, the distribution for \tilde{m} may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP lighter than the corresponding value for single-component LSP dark matter. If SUSY breaking is mediated to the SM sector at order X^* X, only squarks, sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed by a further loop factor. This Spread SUSY spectrum has two versions; the Higgsino masses are generated in one from supergravity giving a wino LSP and in the other radiatively giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is as in minimal SUSY theories. If SUSY breaking is mediated at order X, a much less hierarchical spectrum results---similar to that of the MSSM, but with the superpartner masses 1--2 orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure

    ZNZ_N orbifold compactifications in AdS6AdS_6 with Gauss-Bonnet term

    Full text link
    We present a general setup for junctions of semi-infinite 4-branes in AdS6AdS_6 with the Gauss-Bonnet term. The 3-brane tension at the junction of 4-branes can be nonzero. Using the brane junctions as the origin of the ZNZ_N discrete rotation symmetry, we identify 3-brane tensions at three fixed points of the orbifold T2/Z3T^2/Z_3 in terms of the 4-brane tensions. As a result, the three 3-brane tensions can be simultaneously positive, which enables us to explain the mass hierarchy by taking one of two branes apart from the hidden brane as the visible brane, and hence does not introduce a severe cosmological problem.Comment: Latex file of 20 pages including 2 figure

    Accidental Inflation in String Theory

    Full text link
    We show that inflation in type IIB string theory driven by the volume modulus can be realized in the context of the racetrack-based Kallosh-Linde model (KL) of moduli stabilization. Inflation here arises through the volume modulus slow-rolling down from a flat hill-top or inflection point of the scalar potential. This situation can be quite generic in the landscape, where by uplifting one of the two adjacent minima one can turn the barrier either to a flat saddle point or to an inflection point supporting eternal inflation. The resulting spectral index is tunable in the range of 0.93 < n_s < 1, and there is only negligible production of primordial gravitational waves r < 10^{-6}. The flatness of the potential in this scenario requires fine-tuning, which may be justified taking into account the exponential reward by volume factors preferring the regions of the universe with the maximal amount of slow-roll inflation. This consideration leads to a tentative prediction of the spectral index ns0.95n_s\approx 0.95 or ns0.93n_s \approx 0.93 depending on whether the potential has a symmetry phi -> - phi or not.Comment: 15 pages, 6 figures, LaTeX, uses RevTex

    Modified Gravity and Cosmology

    Get PDF
    In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure

    Ribonucleotide reductases of Salmonella Typhimurium : transcriptional regulation and differential role in pathogenesis

    Get PDF
    Ribonucleotide reductases (RNRs) are essential enzymes that carry out the de novo synthesis of deoxyribonucleotides by reducing ribonucleotides. There are three different classes of RNRs (I, II and III), all having different oxygen dependency and biochemical characteristics. Salmonella enterica serovar Typhimurium (S. Typhimurium) harbors class Ia, class Ib and class III RNRs in its genome. We have studied the transcriptional regulation of these three RNR classes in S. Typhimurium as well as their differential function during infection of macrophage and epithelial cells. Deletion of both NrdR and Fur, two main transcriptional regulators, indicates that Fur specifically represses the class Ib enzyme and that NrdR acts as a global repressor of all three classes. A Fur recognition sequence within the nrdHIEF promoter has also been described and confirmed by electrophoretic mobility shift assays (EMSA). In order to elucidate the role of each RNR class during infection, S. Typhimurium single and double RNR mutants (as well as Fur and NrdR mutants) were used in infection assays with macrophage and epithelial cell lines. Our results indicate class Ia to be mainly responsible for deoxyribonucleotide production during invasion and proliferation inside macrophages and epithelial cells. Neither class Ib nor class III seem to be essential for growth under these conditions. However, class Ib is able to maintain certain growth in an nrdAB mutant during the first hours of macrophage infection. Our results suggest that, during the early stages of macrophage infection, class Ib may contribute to deoxyribonucleotide synthesis by means of both an NrdR and a Fur-dependent derepression of nrdHIEF due to hydrogen peroxide production and DNA damage associated with the oxidative burst, thus helping to overcome the host defenses

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit

    Constraint-based mining of episode rules and optimal window sizes

    No full text
    Abstract. Episode rules are patterns that can be extracted from a large event sequence, to suggest to experts possible dependencies among occurrences of event types. The corresponding mining approaches have been designed to find rules under a temporal constraint that specifies the maximum elapsed time between the first and the last event of the occurrences of the patterns (i.e., a window size constraint). In some applications the appropriate window size is not known, and furthermore, this size is not the same for different rules. To cope with this class of applications, it has been recently proposed in [2] to specifying the maximal elapsed time between two events (i.e., a maximum gap constraint) instead of a window size constraint. Unfortunately, we show that the algorithm proposed to handle the maximum gap constraint is not complete. In this paper we present a sound and complete algorithm to mine episode rules under the maximum gap constraint, and propose to find, for each rule, the window size corresponding to a local maximum of confidence. We show that the extraction can be efficiently performed in practice on real and synthetic datasets. Finally the experiments show that the notion of local maximum of confidence is significant in practice, since no local maximum are found in random datasets, while they can be found in real ones.

    Electrical Distribution System LCA for Future Regional Aircraft—Preliminary Definition of Methodology

    No full text
    The Hybrid Electric Regional Aircraft Distribution Technologies (HECATE) Clean Aviation project will mature and develop breakthrough technologies and perform scalability and impact analysis to ensure safe and power-dense technologies that will enable Entry Into Service (EIS) of hybrid-electric regional aircraft by 2035. Along the project, a circular economy approach in future aircraft will be ensured through the use of Life Cycle Assessment (LCA), performing this type of assessment on the overall electrical system and primary/secondary distribution and conversion technologies, helping to be in line with long-term environmental roadmaps such as Flightpath 2050. This communication includes a description of the HECATE activities and how LCA will be applied to the future Regional Aircraft Electrical Distribution System
    corecore