10 research outputs found

    Evolution of halophytes: multiple origins of salt tolerance in land plants

    No full text
    The evolution of salt tolerance is interesting for several reasons. First, since salt-tolerant plants (halophytes) employ several different mechanisms to deal with salt, the evolution of salt tolerance represents a fascinating case study in the evolution of a complex trait. Second, the diversity of mechanisms employed by halophytes, based on processes common to all plants, sheds light on the way that a plant’s physiology can become adapted to deal with extreme conditions. Third, as the amount of salt-affected land increases around the globe, understanding the origins of the diversity of halophytes should provide a basis for the use of novel species in bioremediation and conservation. In this review we pose the question, how many times has salt tolerance evolved since the emergence of the land plants some 450–470 million years ago? We summarise the physiological mechanisms underlying salt-tolerance and provide an overview of the number and diversity of salt-tolerant terrestrial angiosperms (defined as plants that survive to complete their life cycle in at least 200 mM salt). We consider the evolution of halophytes using information from fossils and phylogenies. Finally, we discuss the potential for halophytes to contribute to agriculture and land management and ask why, when there are naturally occurring halophytes, it is proving to be difficult to breed salt-tolerant crops

    Exploiting Vitis genetic diversity to manage with stress

    No full text

    Halophyte agriculture: success stories

    No full text
    The world's food production will need to increase by up to 70% by 2050 to match the predicted population growth. Achieving this goal will be challenging due to the decreased availability of arable land, resulting from urbanization and land degradation. Soil salinity is a major factor contributing to the latter process. While some improvement in crop yields in saline soils may be achieved as a consequence of single gene transfers, the real progress may be achieved only via a painfully slow “pyramiding” of essential physiological traits. Given the time constraints, a safer solution to meet the 2050 challenge may be to find alternative crop and forage species for farming in salt-affected conditions and to restore salt-affected areas. This review focuses on the suitability of halophytes to become important components of 21st century farming systems. We provide a comprehensive summary of the current use of halophytes for human food consumption, for forage and animal feeds, as oilseed and energy crops, and for desalination and phytoremediation purposes. We argue that the use of halophytes may be a viable commercial alternative to ease pressure on the requirement of good quality land and water for conventional cropping systems and the utilization of land degraded by salinity
    corecore