108 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √s = 13 TeV

    Get PDF
    This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at √s = 13 TeV in 2015. Using a large sample of J/ψ→μμ and Z→μμ decays from 3.2 fb−1 of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to 99% over most of the covered phase space (|η| 2.2, the pT resolution for muons from Z→μμ decays is 2.9 % while the precision of the momentum scale for low-pT muons from J/ψ→μμ decays is about 0.2%

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at √s=8  TeV corresponding to an integrated luminosity of 20.3  fb−1 collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios

    Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in s =8 TeV proton-proton collisions using the ATLAS detector

    Get PDF
    The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for tt¯ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-kt jet with radius parameter R=1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.- We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) an

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment

    Get PDF
    The cross-section for the production of a single top quark in association with a W boson in proton-proton collisions at s√=8TeV is measured. The dataset corresponds to an integrated luminosity of 20.3 fb−1, collected by the ATLAS detector in 2012 at the Large Hadron Collider at CERN. Events containing two leptons and one central b-jet are selected. The W t signal is separated from the backgrounds using boosted decision trees, each of which combines a number of discriminating variables into one classifier. Production of W t events is observed with a significance of 7.7σ. The cross-section is extracted in a profile likelihood fit to the classifier output distributions. The W t cross-section, inclusive of decay modes, is measured to be 23.0 ± 1.3(stat.)− 3.5+ 3.2(syst.)±1.1(lumi.) pb. The measured cross-section is used to extract a value for the CKM matrix element |Vtb| of 1.01 ± 0.10 and a lower limit of 0.80 at the 95% confidence level. The cross-section for the production of a top quark and a W boson is also measured in a fiducial acceptance requiring two leptons with pT> 25 GeV and |η| 20 GeV and |η|  20 GeV, including both W t and top-quark pair events as signal. The measured value of the fiducial cross-section is 0.85 ± 0.01(stat.)− 0.07+ 0.07(syst.)±0.03(lumi.) pb

    Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector

    Get PDF
    The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy at the Large Hadron Collider, corresponding to an integrated luminosity of . The focus is on the contributions to processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.Fil: Aaboud, M.. Université Mohamed Premier and LPTPM; MarruecosFil: Aad, G.. Aix-Marseille Université ; FranciaFil: Abbott, B.. Oklahoma State University; Estados UnidosFil: Abdallah, J.. Academia Sinica; ChinaFil: Abdinov, O.. Azerbaijan Academy of Sciences; AzerbaiyánFil: Alconada Verzini, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Alonso, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Arduh, Francisco Anuar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Dova, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Hoya, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Monticelli, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Wahlberg, Hernan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Bossio Sola, Jonathan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Marceca, Gino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Otero y Garzon, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Piegaia, Ricardo Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sacerdoti, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Zibell. A.. Julius-Maximilians-Universität ; AlemaniaFil: Zieminska, D.. Indiana University; Estados UnidosFil: Zimine, N. I.. Joint Institute for Nuclear Research; RusiaFil: Zimmermann, C.. Universität Mainz ; AlemaniaFil: Zimmermann, S.. Albert-Ludwigs-Universität ; AlemaniaFil: Zinonos, Z.. Georg-August-Universität ; AlemaniaFil: Zinser, M.. Universität Mainz ; AlemaniaFil: Ziolkowski, M.. Universität Siegen ; AlemaniaFil: Živković, L.. University of Belgrade ; SerbiaFil: Zobernig, G.. University of Wisconsin; Estados UnidosFil: Zoccoli, A.. Università di Bologna ; ItaliaFil: Nedden, M. zur. Humboldt University; AlemaniaFil: Zurzolo, G.. Università di Napoli; ItaliaFil: Zwalinski, L.. Cern - European Organization For Nuclear Research; SuizaFil: The ATLAS Collaboration. No especifica

    Measurement of prompt photon production in sNN√=8.16 TeV p+Pb collisions with ATLAS

    Get PDF
    The inclusive production rates of isolated, prompt photons in p+Pb collisions at sNN√=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb−1 recorded in 2016. The cross-section and nuclear modification factor RpPb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and RpPb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.We acknowledge the support of ANPCyT, Argentina; YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portu-gal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, in-dividual groups and members have received support from BCKDF, Canarie, CRC and Compute Canada, Canada; COST, ERC, ERDF, Hori-zon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom
    corecore