199 research outputs found

    The effects of administering different metaphylactic antimicrobials on growth performance and health outcomes of high-risk, newly received feedlot steers

    Get PDF
    Bovine respiratory disease (BRD) is the primary animal health concern facing feedlot producers. Many antimicrobial mitigation strategies are available, but few studies have compared feedlot performance during both the receiving and finishing periods following application of different antimicrobials used as metaphylaxis at arrival. The objective of this study was to compare antimicrobial metaphylaxis methods on clinical health and growth performance across both the receiving and finishing periods. A total of 238 multiple-sourced steers in two source blocks were used in a generalized complete block design. The four treatments included: 1) a negative control, 5 mL of sterile saline injected subcutaneously (CON); 2) subcutaneous administration of florfenicol at 40 mg/kg of BW (NUF); 3) subcutaneous administration of ceftiofur in the posterior aspect of the ear at 6.6 mg/kg of BW (EXC); and 4) subcutaneous administration of tulathromycin at 2.5 mg/kg of BW (DRA). The morbidity rate for the first treatment of BRD was decreased for the DRA and EXC treatments compared to CON and NUF (P \u3c 0.01). Additionally, average daily gain (ADG), dry matter intake (DMI), and gain-to-feed (G:F) were greater (P ≤ 0.02) in the DRA treatment during the receiving period compared to all other treatments. The ADG was also greater (P \u3c 0.05) for EXC than the CON treatment throughout the finishing period. Nonetheless, other growth performance variables did not differ among metaphylactic treatments during the finishing period (P ≥ 0.14). Likewise, no differences in carcass characteristics or liver abscess score were observed (P ≥ 0.18). All complete blood count (CBC) variables were affected by day (P ≤ 0.01) except mean corpuscular hemoglobin concentration (P = 0.29). Treatment × time interactions were observed for platelet count, white blood cell (WBC) count, monocyte count and percentage, and lymphocyte percentage (P ≤ 0.03). However, there were no observed hematological variables that differed among treatment (P ≥ 0.10). The results indicate that some commercially available antimicrobials labeled for metaphylactic use are more efficacious than others in decreasing morbidity rate

    Mechanotransduction and growth factor signalling to engineer cellular microenvironments

    Get PDF
    Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing

    Metaphylactic antimicrobial effects on occurrences of antimicrobial resistance in \u3ci\u3eSalmonella enterica, Escherichia coli\u3c/i\u3e and \u3ci\u3eEnterococcus\u3c/i\u3e spp. measured longitudinally from feedlot arrival to harvest in high-risk beef cattle

    Get PDF
    Aims: Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. Methods and Results: Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). Conclusions: Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors

    Activation of Peroxisome Proliferator–Activated Receptor β/δ Inhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2

    Get PDF
    OBJECTIVE—Chronic activation of the nuclear factor-κB (NF-κB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator–activated receptor (PPAR) β/δ activation prevents inflammation in adipocytes

    Remodeling of extra-bronchial lung vasculature following allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.</p> <p>Methods</p> <p>We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).</p> <p>Results</p> <p>We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.</p> <p>Conclusion</p> <p>We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.</p

    MET and AKT Genetic Influence on Facial Emotion Perception

    Get PDF
    Background: Facial emotion perception is a major social skill, but its molecular signal pathway remains unclear. The MET/ AKT cascade affects neurodevelopment in general populations and face recognition in patients with autism. This study explores the possible role of MET/AKT cascade in facial emotion perception. Methods: One hundred and eighty two unrelated healthy volunteers (82 men and 100 women) were recruited. Four single nucleotide polymorphisms (SNP) of MET (rs2237717, rs41735, rs42336, and rs1858830) and AKT rs1130233 were genotyped and tested for their effects on facial emotion perception. Facial emotion perception was assessed by the face task of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Thorough neurocognitive functions were also assessed. Results: Regarding MET rs2237717, individuals with the CT genotype performed better in facial emotion perception than those with TT (p = 0.016 by ANOVA, 0.018 by general linear regression model [GLM] to control for age, gender, and education duration), and showed no difference with those with CC. Carriers with the most common MET CGA haplotype (frequency = 50.5%) performed better than non-carriers of CGA in facial emotion perception (p = 0.018, df = 1, F = 5.69, p = 0.009 by GLM). In MET rs2237717/AKT rs1130233 interaction, the C carrier/G carrier group showed better facial emotion perception than those with the TT/AA genotype (p = 0.035 by ANOVA, 0.015 by GLM), even when neurocognitive functions were controlled (p = 0.046 by GLM)

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Synthetics and theoretical seismology

    Full text link
    corecore