759 research outputs found

    An example of optimal field cut in lattice gauge perturbation theory

    Full text link
    We discuss the weak coupling expansion of a one plaquette SU(2) lattice gauge theory. We show that the conventional perturbative series for the partition function has a zero radius of convergence and is asymptotic. The average plaquette is discontinuous at g^2=0. However, the fact that SU(2) is compact provides a perturbative sum that converges toward the correct answer for positive g^2. This alternate methods amounts to introducing a specific coupling dependent field cut, that turns the coefficients into g-dependent quantities. Generalizing to an arbitrary field cut, we obtain a regular power series with a finite radius of convergence. At any order in the modified perturbative procedure, and for a given coupling, it is possible to find at least one (and sometimes two) values of the field cut that provide the exact answer. This optimal field cut can be determined approximately using the strong coupling expansion. This allows us to interpolate accurately between the weak and strong coupling regions. We discuss the extension of the method to lattice gauge theory on a D-dimensional cubic lattice.Comment: 9 pages, 11 figs., uses revtex4, modified presentatio

    A New Phase Time Formula for Opaque Barrier Tunneling

    Full text link
    After a brief review of the derivation of the standard phase time formula, based on the use of the stationary phase method, we propose, in the opaque limit, an alternative method to calculate the phase time. The new formula for the phase time is in excellent agreement with the numerical simulations and shows that for wave packets whose upper limit of the momentum distribution is very close to the barrier height, the transit time is proportional to the barrier width.Comment: 9 pages, 2 figure

    Effect of speed on economy of airship traffic

    Get PDF
    The economic costs and benefits of speed on airship traffic are calculated and different factors are considered

    Molecular Feshbach dissociation as a source for motionally entangled atoms

    Full text link
    We describe the dissociation of a diatomic Feshbach molecule due to a time-varying external magnetic field in a realistic trap and guide setting. An analytic expression for the asymptotic state of the two ultracold atoms is derived, which can serve as a basis for the analysis of dissociation protocols to generate motionally entangled states. For instance, the gradual dissociation by sequences of magnetic field pulses may delocalize the atoms into macroscopically distinct wave packets, whose motional entanglement can be addressed interferometrically. The established relation between the applied magnetic field pulse and the generated dissociation state reveals that square-shaped magnetic field pulses minimize the momentum spread of the atoms. This is required to control the detrimental influence of dispersion in a recently proposed experiment to perform a Bell test in the motion of the two atoms [C. Gneiting and K. Hornberger, Phys. Rev. Lett. 101, 260503 (2008)].Comment: 12 pages, 3 figures; corresponds to published versio

    On the Generalization Capacities of Neural Controlled Differential Equations

    Full text link
    We consider a supervised learning setup in which the goal is to predicts an outcome from a sample of irregularly sampled time series using Neural Controlled Differential Equations (Kidger, Morrill, et al. 2020). In our framework, the time series is a discretization of an unobserved continuous path, and the outcome depends on this path through a controlled differential equation with unknown vector field. Learning with discrete data thus induces a discretization bias, which we precisely quantify. Using theoretical results on the continuity of the flow of controlled differential equations, we show that the approximation bias is directly related to the approximation error of a Lipschitz function defining the generative model by a shallow neural network. By combining these result with recent work linking the Lipschitz constant of neural networks to their generalization capacities, we upper bound the generalization gap between the expected loss attained by the empirical risk minimizer and the expected loss of the true predictor.Comment: Edited typo

    Echolocation by Quasiparticles

    Full text link
    It is shown that the local density of states (LDOS), measured in an Scanning Tunneling Microscopy (STM) experiment, at a single tip position contains oscillations as a function of Energy, due to quasiparticle interference, which is related to the positions of nearby scatterers. We propose a method of STM data analysis based on this idea, which can be used to locate the scatterers. In the case of a superconductor, the method can potentially distinguish the nature of the scattering by a particular impurity.Comment: 4+ page

    The effect of dressing on high-order harmonic generation in vibrating H2_2 molecules

    Full text link
    We develop the strong-field approximation for high-order harmonic generation in hydrogen molecules, including the vibrational motion and the laser-induced coupling of the lowest two Born-Oppenheimer states in the molecular ion that is created by the initial ionization of the molecule. We show that the field dressing becomes important at long laser wavelengths (≈2μ\approx 2 \mum), leading to an overall reduction of harmonic generation and modifying the ratio of harmonic signals from different isotopes.Comment: 23 pages, 11 figures, submitted to PR
    • …
    corecore