2,437 research outputs found

    Soft Confinement for Polymer Solutions

    Full text link
    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa, et al.Comment: 5 pages, 3 figure

    Epitaxial Transition from Gyroid to Cylinder in a Diblock Copolymer Melt

    Get PDF
    An epitaxial transition from a bicontinious double gyroid to a hexagonally packed cylinder structure induced by an external flow is simulated using real-space dynamical self-consistent field technique. In order to simulate the structural change correctly, we introduce a system size optimization technique by which emergence of artificial intermediate structures are suppressed. When a shear flow in [111] direction of the gyroid unit cell is imposed, a nucleation and growth of the cylinder domains is observed. We confirm that the generated cylindrical domains grow epitaxially to the original gyroid domains as gyroid d{220}d_{\{220\}} \to cylinder d{10}d_{\{10\}}. In a steady state under the shear flow, the gyroid shows different reconnection processes depending on the direction of the velocity gradient of the shear flow. A kinetic pathway previously predicted using the self-consistent field theory where three fold junctions transform into five fold junctions as an intermediate state is not observed.Comment: 24 pages, 14 figures, submitted to Macromolecule

    Multi-objective optimisation of many-revolution, low-thrust orbit raising for Destiny mission

    Get PDF
    This work will present a Multi-Objective approach to the design of the initial, Low-Thrust orbit raising phase for JAXA’s proposed technology demonstrator mission DESTINY. The proposed approach includes a simplified model for Low Thrust, many-revolution transfers, based on an analytical orbital averaging technique, and a simplified control parameterisation. Eclipses and J2 perturbation are also accounted for. This is combined with a stochastic optimisation algorithm to solve optimisation problems in which conflicting performance figures of DESTINY’s trajectory design are concurrently optimised. It will be shown that the proposed approach provides for a good preliminary investigation of the launch window and helps identifying critical issues to be addressed in future design phases

    Molecular-shape- and size-independent power-law dependence of percolation thresholds on radius of gyration in ideal molecular systems

    Full text link
    Three-dimensional single-component ideal gas systems composed of model homogeneous rigid molecules in various molecular shapes and sizes are simulated by a molecular Monte Carlo simulation technique. We reveal that percolation thresholds of such single-component systems result in, when the molecular volume is fixed, power-law decreasing functions of the radius of gyration (gyradius) of the molecules. The systems with the same parameter set of the molecular volume and radius of gyration, but in different molecular shapes, show the identical value of the percolation threshold. Moreover, we also reveal that a dimensionless scale-free parameter, which is the ratio between the radius of gyration and real cube root of the molecular volume, uniquely determines the percolation threshold.Comment: 7 pages, 4 figure
    corecore