53 research outputs found

    Increased CSF levels of aromatic amino acids in hip fracture patients with delirium suggests higher monoaminergic activity

    Get PDF
    textabstractBackground: To examine whether delirium in hip fracture patients was associated with changes in the levels of amino acids and/or monoamine metabolites in cerebrospinal fluid (CSF) and serum. Methods: In this prospective cohort study, 77 patients admitted with an acute hip fracture to Oslo University Hospital, Norway, were studied. The concentrations of amino acids in CSF and serum were determined by high performance liquid chromatography. The patients were assessed daily for delirium by the Confusion Assessment Method (pre-operatively and post-operative day 1-5 (all) or until discharge (delirious patients)). Pre-fracture dementia status was decided by an expert panel. Serum was collected pre-operatively and CSF immediately before spinal anesthesia. Results: Fifty-three (71 %) hip fracture patients developed delirium. In hip fracture patients without dementia (n = 39), those with delirium had significantly higher CSF levels of tryptophan (40 % higher), tyrosine (60 % higher), phenylalanine (59 % higher) and the monoamine metabolite 5-hydroxyindoleacetate (23 % higher) compared to those without delirium. The same amino acids were also higher in CSF in delirious patients with dementia (n = 38). The correlations between serum and CSF amino acid levels were poor. Conclusion: Higher CSF levels of monoamine precursors in hip fracture patients with delirium suggest a higher monoaminergic activity in the central nervous system during delirium in this patient group

    SLC30A3 Responds to Glucose- and Zinc Variations in ß-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During ß-Cell Stress

    Get PDF
    BACKGROUND:Ion transporters of the Slc30A- (ZnT-) family regulate zinc fluxes into sub-cellular compartments. beta-cells depend on zinc for both insulin crystallization and regulation of cell mass. METHODOLOGY/PRINCIPAL FINDINGS:This study examined: the effect of glucose and zinc chelation on ZnT gene and protein levels and apoptosis in beta-cells and pancreatic islets, the effects of ZnT-3 knock-down on insulin secretion in a beta-cell line and ZnT-3 knock-out on glucose metabolism in mice during streptozotocin-induced beta-cell stress. In INS-1E cells 2 mM glucose down-regulated ZnT-3 and up-regulated ZnT-5 expression relative to 5 mM. 16 mM glucose increased ZnT-3 and decreased ZnT-8 expression. Zinc chelation by DEDTC lowered INS-1E insulin content and insulin expression. Furthermore, zinc depletion increased ZnT-3- and decreased ZnT-8 gene expression whereas the amount of ZnT-3 protein in the cells was decreased. Zinc depletion and high glucose induced apoptosis and necrosis in INS-1E cells. The most responsive zinc transporter, ZnT-3, was investigated further; by immunohistochemistry and western blotting ZnT-3 was demonstrated in INS-1E cells. 44% knock-down of ZnT-3 by siRNA transfection in INS-1E cells decreased insulin expression and secretion. Streptozotocin-treated mice had higher glucose levels after ZnT-3 knock-out, particularly in overt diabetic animals. CONCLUSION/SIGNIFICANCE:Zinc transporting proteins in beta-cells respond to variations in glucose and zinc levels. ZnT-3, which is pivotal in the development of cellular changes as also seen in type 2 diabetes (e.g. amyloidosis in Alzheimer's disease) but not previously described in beta-cells, is present in this cell type, up-regulated by glucose in a concentration dependent manner and up-regulated by zinc depletion which by contrast decreased ZnT-3 protein levels. Knock-down of the ZnT-3 gene lowers insulin secretion in vitro and affects in vivo glucose metabolism after streptozotocin treatment

    The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, tuberculosis (TB) was responsible for 2.5% of global mortality (among men 3.1%; among women 1.8%) and 2.2% of global burden of disease (men 2.7%; women 1.7%). The present work portrays accumulated evidence on the association between alcohol consumption and TB with the aim to clarify the nature of the relationship.</p> <p>Methods</p> <p>A systematic review of existing scientific data on the association between alcohol consumption and TB, and on studies relevant for clarification of causality was undertaken.</p> <p>Results</p> <p>There is a strong association between heavy alcohol use/alcohol use disorders (AUD) and TB. A meta-analysis on the risk of TB for these factors yielded a pooled relative risk of 2.94 (95% CI: 1.89-4.59). Numerous studies show pathogenic impact of alcohol on the immune system causing susceptibility to TB among heavy drinkers. In addition, there are potential social pathways linking AUD and TB. Heavy alcohol use strongly influences both the incidence and the outcome of the disease and was found to be linked to altered pharmacokinetics of medicines used in treatment of TB, social marginalization and drift, higher rate of re-infection, higher rate of treatment defaults and development of drug-resistant forms of TB. Based on the available data, about 10% of the TB cases globally were estimated to be attributable to alcohol.</p> <p>Conclusion</p> <p>The epidemiological and other evidence presented indicates that heavy alcohol use/AUD constitute a risk factor for incidence and re-infection of TB. Consequences for prevention and clinical interventions are discussed.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    The protocol of the Oslo Study of Clonidine in Elderly Patients with Delirium; LUCID:a randomised placebo-controlled trial

    Get PDF
    Background Delirium affects 15% of hospitalised patients and is linked with poor outcomes, yet few pharmacological treatment options exist. One hypothesis is that delirium may in part result from exaggerated and/or prolonged stress responses. Dexmedetomidine, a parenterally-administered alpha2-adrenergic receptor agonist which attenuates sympathetic nervous system activity, shows promise as treatment in ICU delirium. Clonidine exhibits similar pharmacodynamic properties and can be administered orally. We therefore wish to explore possible effects of clonidine upon the duration and severity of delirium in general medical inpatients. Methods/Design The Oslo Study of Clonidine in Elderly Patients with Delirium (LUCID) is a randomised, placebo-controlled, double-blinded, parallel group study with 4-month prospective follow-up. We will recruit 100 older medical inpatients with delirium or subsyndromal delirium in the acute geriatric ward. Participants will be randomised to oral clonidine or placebo until delirium free for 2 days (Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria), or after a maximum of 7 days treatment. Assessment of haemodynamics (blood pressure, heart rate and electrocardiogram) and delirium will be performed daily until discharge or a maximum of 7 days after end of treatment. The primary endpoint is the trajectory of delirium over time (measured by Memorial Delirium Assessment Scale). Secondary endpoints include the duration of delirium, use of rescue medication for delirium, pharmacokinetics and pharmacodynamics of clonidine, cognitive function after 4 months, length of hospital stay and need for institutionalisation. Discussion LUCID will explore the efficacy and safety of clonidine for delirium in older medical inpatients. Trial registration ClinicalTrials.gov NCT01956604 . EudraCT Number: 2013-000815-2

    Investigation of enzyme-sensitive lipid&nbsp;nanoparticles for delivery of siRNA to blood&ndash;brain barrier and glioma cells

    No full text
    Jonas Bruun,1 Trine B Larsen,1 Rasmus I J&oslash;lck,1 Rasmus Eliasen,1 Ren&eacute; Holm,2 Torben Gjetting,1 Thomas L Andresen11Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark; 2H Lundbeck A/S, Biologics and Pharmaceutical Science, Valby, DenmarkAbstract: Clinical applications of siRNA for treating disorders in the central nervous system require development of systemic stable, safe, and effective delivery vehicles that are able to cross the impermeable blood&ndash;brain barrier (BBB). Engineering nanocarriers with low cellular interaction during systemic circulation, but with high uptake in targeted cells, is a great challenge and is further complicated by the BBB. As a first step in obtaining such a delivery system, this study aims at designing a lipid nanoparticle (LNP) able to efficiently encapsulate siRNA by a combination of titratable cationic lipids. The targeted delivery is obtained through the design of a two-stage system where the first step is conjugation of angiopep to the surface of the LNP for targeting the low-density lipoprotein receptor-related protein-1 expressed on the BBB. Second, the positively charged LNPs are masked with a negatively charged PEGylated (poly(ethylene glycol)) cleavable lipopeptide, which contains a recognition sequence for matrix metalloproteinases (MMPs), a class of enzymes often expressed in the tumor microenvironment and inflammatory BBB conditions. Proteolytic cleavage induces PEG release, including the release of four glutamic acid residues, providing a charge switch that triggers a shift of the LNP charge from weakly negative to positive, thus favoring cellular endocytosis and release of siRNA for high silencing efficiency. This work describes the development of this two-stage nanocarrier-system and evaluates the performance in brain endothelial and glioblastoma cells with respect to uptake and gene silencing efficiency. The ability of activation by MMP-triggered dePEGylation and charge shift is demonstrated to substantially increase the uptake and the silencing efficiency of the LNPs.Keywords: matrix metalloproteinase, cleavable PEG-lipid, gene therapy, BBB, angiopep, nanocarrie
    corecore