-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Crossref

Chapter 3

Determining Greenhouse Gas Emissions
and Removals Associated with Land-Use
and Land-Cover Change

Sean P. Kearney and Sean M. Smukler

Abstract This chapter reviews methods and considerations for quantifying green-
house gas (GHG) emissions and removals associated with changes in land-use and
land-cover (LULC) in the context of smallholder agriculture. LULC change con-
tributes a sizeable portion of global anthropogenic GHG emissions, accounting for
12.5 % of carbon emissions from 1990 to 2010 (Biogeosciences 9:5125-5142,
2012). Yet quantifying emissions from LULC change remains one of the most
uncertain components in carbon budgeting, particularly in landscapes dominated by
smallholder agriculture (Mitig Adapt Strateg Glob Chang 12:1001-1026, 2007;
Biogeosciences 9:5125-5142, 2012; Glob Chang Biol 18:2089-2101, 2012).
Current LULC monitoring methodologies are not well-suited for the size of land
holdings and the rapid transformations from one land-use to another typically found
in smallholder landscapes. In this chapter we propose a suite of methods for esti-
mating the net changes in GHG emissions that specifically address the conditions of
smallholder agriculture. We present methods encompassing a range of resource
requirements and accuracy, and the trade-offs between cost and accuracy are spe-
cifically discussed. The chapter begins with an introduction to existing protocols,
standards, and international reporting guidelines and how they relate to quantifying,
analyzing, and reporting GHG emissions and removals from LULC change. We
introduce general considerations and methodologies specific to smallholder agricul-
tural landscapes for generating activity data, linking it with GHG emission factors
and assessing uncertainty. We then provide methodological options, additional con-
siderations, and minimum datasets required to meet the varying levels of reporting
accuracy, ranging from low-cost high-uncertainty to high-cost low-uncertainty
approaches. Technical step-by-step details for suggested approaches can be found in
the associated website.
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3.1 Introduction

Land-use and land-cover (LULC) change contributes a sizeable portion of global
anthropogenic GHG emissions, accounting for an estimated 12.5 % of carbon emis-
sions from 1990 to 2010 (Houghton et al. 2012). Significant demographic and socio-
economic pressures are exerted on carbon storing land uses such as forests in the
tropics yet distribution and rates of change (e.g., loss of forests and agricultural inten-
sification) in tropical smallholder landscapes remain very uncertain (Achard et al.
2002). Much of this uncertainty stems from the substantial heterogeneity of LULC
that exists, often at very fine spatial scales, in such landscapes. Even within LULC
categories, significant heterogeneity in carbon stocks often occurs as a result of driv-
ers specific to smallholder agriculture, such as fallow rotations, uneven canopy age
distribution, and integrated crop-livestock systems (Maniatis and Mollicone 2010;
Verburg et al. 2009). These factors result in the need for monitoring strategies differ-
ent from those developed for more commonly monitored LULC transitions such as
large-scale deforestation and urban expansion (Ellis 2004). Here we present general
considerations and a suite of methods for estimating net changes in GHG emissions
that specifically address the conditions of smallholder agriculture. In the process we
illustrate the relative trade-offs between costs of analysis, precision, and accuracy.

There are four basic steps required to calculate GHG emissions/removals from
LULC change:

* Determine change in LULC. Changes in the areal extent of LULC classes must
be determined by comparing data collected from two or more points in time.

* Develop a baseline. Observed changes in carbon stocks must be compared against
a “business as usual” scenario of what would have happened in the absence of
project activities. This step is generally carried out by either developing a baseline
scenario or through direct observation of a reference region.

* Calculate carbon stock changes. Carbon stocks associated with LULC classes
must be quantified for each point in time or emission factors must be used to
calculate carbon stock changes and associated GHG emissions or removals.

* Assess accuracy and calculate uncertainty. Accuracy of each step must be assessed
in order to determine the uncertainty associated with final emission/removal
estimates associated with LULC changes.

It is important to note that these steps are not necessarily chronological. For
example a baseline scenario could be developed prior to LULC change detection.
Accuracy assessments should be done concurrently with each phase of data collec-
tion and analysis.

In order to carry out the above steps, two basic types of data are required, defined
by the Intergovernmental Panel on Climate Change (IPCC) as activity data and emis-
sion factors (IPCC 2006). Activity data refer to the areal extent of chosen LULC
categories, subcategories, and strata and are generally presented in hectares. Emission
factors refer to the data used to calculate carbon stocks associated with activity data
and are usually presented as metric tons of carbon (or carbon dioxide equivalents)
per hectare. Emission factors may not be required for all carbon pools when carbon
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stock densities are inventoried directly using field sampling and/or remote sensing
techniques. The IPCC Guidelines (2006) also lay out three tiers of methods used to
calculate GHG emissions and reductions, which increase not only in precision and
accuracy but also in data requirements and complexity of analysis. Tier 1 requires
country-specific activity data but uses IPCC default emission factors that can be
found in the IPCC Emission Factor Database (IPCC n.d.) and analysis is generally
simple and of low cost. Tier 2 uses similar methods to Tier 1 but requires the use of
some region- or country-specific emission factors or carbon stock data for key car-
bon pools and LULC categories (more information on key pools can be found in
Sect. 3.4.1). Tier 3 requires high-resolution activity data combined with highly
disaggregated inventory data for carbon stocks collected at the national or local
level and repeated over time.

Collection of data to generate emission factors or calculate carbon stock densities
is covered elsewhere in this book. The focus of this chapter is on the generation of
activity data and the various methods available to link emission factors and/or car-
bon stock densities with activity data for estimating total carbon stocks and GHG
emissions/removals at the landscape-scale. The following sections provide an over-
view of the general activities for each of the four steps required to calculate GHG
emissions/reductions from LULC change, with a focus on smallholder agriculture
landscapes. Trade-offs between uncertainty and cost are addressed and a variety of
references—including existing protocols, scientific research, and review papers—are
cited. Summary tables are presented at the beginning of each section, with a complete
table at the end of the chapter (Table 3.8).

3.2 Determining Change in LULC

The IPCC Guidelines (2006) outline three specific Approaches to monitoring
activity data (described in detail below). The three Approaches refer to the repre-
sentation of land area and will influence the ability to meet the three IPCC Tiers,
which indicate the overall uncertainty of GHG emission/reduction estimates
(Table 3.1). In general, progressing from Approach 1 to 3 increases the amount of
information associated with activity data but requires greater resources. It should be
noted that increasing the information contained within activity data does not guar-
antee a reduction in uncertainty. Accuracy will ultimately depend on the quality of data
and implementation of the Approach as much as the Approach itself (IPCC 2006).
However, progressing from Approach 1 to 3 provides the opportunity for reducing
uncertainty and meeting higher Tier requirements.

Approach 1 uses data on total land-use area for each LULC class and stratum but
without data on conversions between land uses. The result of Approach 1 is usually
a table of land-use areas at specific points in time and data often come from aggre-
gated household surveys or census data. Results are not spatially explicit, only allow
for the calculation of net area changes and do not allow for analysis of GHG emis-
sions/removals for land remaining within a LULC category or the exploration of
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Table 3.1 Summary of activities to determine change in LULC at various uncertainty levels

Higher Mid-range Key
Activity uncertainty uncertainty Lower uncertainty references
Data Approach 1 or | Approach 2 with Approach 3 with De Sy et al.
acquisition 2 with minimal | disaggregated mid-resolution (2012); IPCC
or no data datasets (existing or | imagery and (20006);
collection developed) supplementary data Ravindranath
(using existing | Approach 3 with Approach 3 with very | and Ostwald
aggregated coarse or mid- high-resolution (2008)
datasets such | resolution imagery | imagery
as census or
existing maps)
LULC Broad LULC Broad LULC Empirically derived GOFC-GOLD
classification | categories categories with LULC categories and | (2014); IPCC
developed simple subclasses or | strata (2006);
through strata Vincikovd
subjective Classified using Supervised etal. (2010)
(non- visual interpretation | classification using
empirical) or pixel-based pixel-based,
survey techniques with object-based or
methods; not limited or imagery- | machine learning
spatially based training data; | techniques with
explicit spatially explicit field-derived training
data; spatially explicit
LULC Arithmetic Arithmetic Spatially explicit Huang and
change calculation of | calculation of change detection Song (2012);
detection change in total | change in total land | using post- van Oort
land area for area for each LULC | classification (2007)
each LULC class and transitions | comparison, image
class using between LULC comparison,
data generated | classes using data bitemporal
by Approach 1 | generated by classification or other
Approach 2 or; GIS-based

post-classification
comparison with
coarse or mid-
resolution imagery

approaches

drivers of LULC change. Therefore Approach 1 may not be suitable for carbon
crediting under mechanisms such as the Verified Carbon Standard (VCS) or
Reducing Emissions from Deforestation and Forest Degradation (REDD+)
(see GOFC-GOLD 2014).

Approach 2 builds on Approach 1 by including information on conversions from
one LULC class to another, but the data remain spatially non-explicit. This provides
the ability to assess changes both into and out of a given LULC class and track
conversions between LULC classes. A key benefit of Approach 2 is that emission
factors can be modified (if data are available) to reflect specific conversions from
one LULC category to another. For example, forests with a long history of prior
cultivation may store less carbon than undisturbed forests of the same age (e.g.,
Eaton and Lawrence 2009; Houghton et al. 2012). Such factors cannot be taken into
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account using Approach 1. The results of Approach 2 can be expressed as a land-use
conversion matrix of the areal extent of initial and final LULC categories.
Approach 3 uses datasets that are spatially explicit and compiled through sam-
pling and wall-to-wall mapping techniques. Remotely sensed data (e.g., imagery
from aerial- or satellite-based sensors) are often used in combination with georefer-
enced sampling such as field or household surveys. Data are then analyzed using
geographic information systems (GIS) and can be easily combined with other spa-
tially explicit datasets to stratify LULC categories and emission factors. This can
greatly improve the accuracy of emission/removal estimates, especially for large
areas, and allows for statistical quantification of uncertainty. Approach 3 can be an
efficient way to monitor large areas. However it may require greater human and
financial resources, which could be cost-prohibitive for smaller projects, especially
if the spatial resolution of freely available or low-cost imagery is too coarse to detect
LULC changes. (See Sect. 3.2.2 for more information about remotely sensed data.)

3.2.1 Setting Project Boundaries

The extent, location, and objectives of monitoring will all influence the appropriate
choice of methods for analyzing LULC change and associated GHG emissions and
reductions. While activity data may or may not be spatially explicit, the extent
(i.e., boundaries) of the area monitored must be explicitly and unambiguously
defined and should remain the same for all reporting periods. Several factors should
be considered when defining the extent of the monitoring area.

Baseline Development and Data Availability. The availability of existing data
(e.g., historical and/or cloud-free satellite imagery, forest inventories, research stud-
ies, census data) can determine the area for which a justifiable baseline scenario can
be developed and therefore the project extent may need to be adjusted accordingly
(Sect. 3.3). In some cases, it might be useful to adhere to political divisions rather
than geographic boundaries if socioeconomic data are available in political units that
do not correspond with geographic boundaries such as a watershed or ecoregion. If a
reference region is to be used, it is important to consider whether one of appropriate
size and characteristics can be found to match the chosen inventory extent (Sect.
3.3.2). For example the reference region may need to be 2-20 times larger than the
project area to meet some VCS methodologies (VCS Association 2010).

IPCC Tier Selection. The inventory area may need to be reduced in order to meet
higher IPCC Tier levels. For example, if a spatially explicit inventory (Approach 3)
meeting IPCC Tier 3 guidelines is desired, expensive high-resolution satellite imag-
ery and intensive data collection may be required and resource constraints may lead
to a smaller inventory area. Meeting a lower IPCC Tier requirement could allow for
the use of freely available imagery and/or existing data that could enable monitor-
ing of a larger area.

Stratification and Variability. 1deally, inventory data will be collected in such a way
as to sufficiently capture the spatial variability of key stratification variables.
Identification of such variables a priori may reveal that it is impractical or financially
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unfeasible to develop a sampling strategy that can sufficiently capture variation within
the entire area and the extent of the monitoring area may need to be adjusted.

Policy Levers. It is important to consider which policy levers exist, at what scale
they can be applied and which may be influenced by assessment results when deter-
mining monitoring boundaries. For example, if regulations affecting land-use are
implemented solely along political boundaries, it may not make sense to draw
project-monitoring extents around watershed boundaries that may encompass mul-
tiple political units with differing regulations or policy options.

3.2.2 Data Acquisition

Data to estimate areal LULC extents can be acquired through three general sources:
existing datasets developed for other purposes, collection of new data through sam-
pling and complete LULC inventories using remote sensing data (Table 3.1).

Existing Data

Existing datasets can come from national or international sources or from other
projects or research activities. Data may be available in a variety of formats and
collection dates, and at varying spatial and temporal scales and extents. Time should
be taken to identify existing data sources in order to determine what data remain to
be collected, at what temporal and spatial scales and to what degree project resources
can accommodate these needs. Useful datasets can include historical LULC maps,
climate data, biophysical data (e.g., soil or hydrological maps), census or household
surveys and political boundaries or administrative units.

Ground-Based Field Sampling Methods

Ground-based methods are recommended when existing datasets are incomplete,
out of date, or inaccurate and complete spatial coverage with remote sensing tech-
niques is unfeasible or would not be accurate on its own (IPCC 2003, Sect. 2.4.2).
Ground-based sampling can be expensive and time consuming and is generally
more appropriate for smaller project areas or when used in a sampling framework
over larger areas. Field sampling to help determine LULC areal extents can result in
two types of geographic data: biophysical data and socioeconomic data. Biophysical
data generally require objective physical measurement of various land attributes
(e.g., parcel size, vegetative composition). Ideally these measurements are georef-
erenced using GPS in order to integrate them with remote sensing data and enable
accurate follow-up measurements. Socioeconomic data can be collected using a
variety of methods including interviews, surveys, census, questionnaires, and
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Box 3.1 Random and Targeted Sampling Methods for Generating
LULC Activity Data

Random Sampling

Random sampling is generally done using systematic or stratified sampling
methods. Systematic sampling spatially distributes sampling locations in a ran-
dom but orderly way, for example using a grid. Stratified sampling selects sam-
ple sites based on any number of environmental, geographic, or socioeconomic
variables to achieve sampling rates in proportion to the distribution of the chosen
variables across the inventory extent. Stratified sampling methods (e.g., optimum
allocation) can improve the accuracy and reduce costs of monitoring efforts
(Maniatis and Mollicone 2010) and tools exist to determine the number of sam-
ple plots needed (UNFCCC/CCNUCC 2009). Ideally sample sites for determi-
nation of LULC can be co-located with sites for measuring carbon stocks and
GHG emissions, although this may not always be practical or feasible.

Targeted Sampling

Targeted sampling refers to the non-random selection of specific sample
regions based on determined criteria. A common example of targeted sampling
is the use of low-cost or free-imagery to identify “hotspots” of active LULC
change such as deforestation (Achard et al. 2002; De Sy et al. 2012). These
hotspots, or a randomly selected subset within, can then be selected as sample
units for more in-depth monitoring using higher-resolution imagery and/or
comprehensive fieldwork. These data can then be used to train LULC classifi-
cation algorithms and assess the accuracy of results obtained using medium or
coarse resolution imagery. Regardless of the method chosen, sampling should
be statistically sound and allow for the quantification of uncertainty.

participatory rural appraisals (e.g., semistructured interviews, transect walks, and
other flexible approaches involving local communities; see Ravindranath and
Ostwald 2008 for more information). Socioeconomic data may or may not be geo-
referenced, depending on the application.

Both biophysical and socioeconomic data acquired using the methods mentioned
above can give a reasonable estimate of the proportions of LULC categories within
the inventory area provided sample locations are selected using statistically rigor-
ous methods to maintain consistency and minimize bias. These proportions can then
be multiplied by the total land area to generate activity data. Sample locations can
be chosen using random or targeted (non-random) methods (Box 3.1). Random
methods allow for quantification of uncertainties and are therefore generally
preferred, but targeted methods may be useful for measuring carbon stocks related
to a specific event (e.g., a fire) or calibration of modelling for a specific carbon pool
(e.g., effects of decomposition on soil carbon) (Maniatis and Mollicone 2010).
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Remote Sensing Data

Complete wall-to-wall LULC inventories are generally carried out using a combi-
nation of remote sensing data and field-based sampling. Remotely sensed data come
from aerial photography, satellite sensors, and airborne or satellite-based RADAR
or LiDAR. Optical sensors are the most commonly used in LULC classification as
they provide spectral information in the visible and infrared bands at a range of
resolutions and costs (Table 3.2). While fine (<5 m) or medium (10-60 m) resolu-
tion imagery are preferable for accurately monitoring LULC in landscapes domi-
nated by smallholder agriculture, cost of acquisition and/or processing may be
prohibitive for projects covering large areas. However, methods exist for nesting
high-resolution sampling within coarser resolution wall-to-wall coverage to reduce
uncertainty of LULC change analysis across large areas and lower costs (e.g., Achard
et al. 2002; Jain et al. 2013).

Image processing techniques can be applied to the remotely sensed data to
enhance particular land-cover types, or enable more accurate stratification and clas-
sification, such as the calculation of the Normalized Difference Vegetation Index
(NDVI), developing textural variables (e.g., Castillo-Gonzalez 2009) or principle
component analysis (PCA). Imagery can also be classified into land-cover classes
enabling easier manipulation in a GIS. Spatial analysis of remotely sensed data
combined with environmental and/or socioeconomic variables can also create addi-
tional datasets to further enhance classification and stratification. Designating eco-
logical or anthropogenic biomes (Ellis and Ramankutty 2008), calculating market
accessibility (Chomitz and Gray 1996; Southworth et al. 2004) and identifying
landscape mosaics (Messerli et al. 2009) are examples of such user-generated datasets
to improve analysis of LULC change and explore drivers of change in smallholder
landscapes.

Spatial Considerations

The spatial scale(s) at which data collection and analysis will take place is a key factor
to consider when developing a monitoring and analysis program. Changing the scale
at which analysis takes place can result in significantly different results, even when
using the same dataset. The “optimal” scale of measurement and prediction is proj-
ect-specific and may even vary for different steps of analysis (Lesschen et al. 2005).
Complementary analysis at multiple scales may further improve accuracy (Messerli
et al. 2009). A number of factors related to spatial scale should be considered to
maintain transparency, and improve accuracy and efficiency of analysis.

The finest-scale unit of data is called a minimum information unit or minimum
mapping unit (MIU or MMU). This is often the size of a small contiguous group of
pixels for remote sensing data or the household for census data, although data may
only be available aggregated to an administrative unit such as a village or municipal-
ity. To qualify for carbon credits, for example under the REDD+ mechanism, MMUs
of <1-6 ha are generally required (De Sy et al. 2012; GOFC-GOLD 2014). In land-
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scapes dominated by smallholder agriculture, individual LULC parcels are often
0.5 ha or smaller. When using remote sensing data, it is preferable to have MIUs
(e.g., pixels) that are significantly smaller than the average farm size to avoid mixed
pixels that encompass multiple LULC categories. However methods of remote sens-
ing analysis, such as spectral unmixing (Quintano et al. 2012) and hierarchical train-
ing with very high-resolution imagery (e.g., Jain et al. 2013) have been developed to
attempt to deal with the issue of mixed pixels in coarser resolution imagery.

It is important to consider the scale of all available data to avoid mismatches that
could lead to data management problems or wasted resources. Depending on the
analysis methods used, data may have to be resampled to the coarsest available
dataset. For example, it may be unnecessary to acquire a 5 m digital elevation model
for stratification if it will be combined with 30 m Landsat data.

Temporal Considerations

Several temporal boundaries should be fixed established during the development of
a monitoring methodology.

Historical reference period. If developing a baseline scenario from a historical ref-
erence period, this period must be specifically defined and appropriate for sce-
nario development.

Monitoring period: The period for which changes in GHG emissions and reductions
from LULC change are to be monitored.

Timing of monitoring: The schedule for monitoring to take place. Care should be
taken to acquire imagery and/or carry out field sampling as close to the same
time of year as possible for each monitoring period as interannual variability in
vegetative cover and phenology may vary significantly in some locations (Huang
and Song 2012; Serneels et al. 2001). Changes in carbon stocks from LULC
change, such as declines in soil organic carbon (SOC) or vegetative regrowth,
may not be linear within a monitoring period or may level off to zero-change
within the period, also requiring appropriately timed sampling or modelling.

Monitoring frequency: The frequency of monitoring activities (e.g., imagery acquisi-
tion, field-sampling, surveys). Management strategies within a LULC category, for
example cropping intensity, can have significant impacts on carbon stocks (e.g.,
Schmook 2010). More frequently, strategically timed data collection (i.e., sam-
pling and/or image acquisition) is often required to detect changes in management
strategies within an LULC category (De Sy et al. 2012; Jain et al. 2013; Smith et al.
2012). In most cases, particularly when dealing with remote sensing, increasing the
temporal resolution of data (i.e., more frequent acquisition) necessitates declining
spatial coverage and resolution (due to either technological or cost-prohibitive fac-
tors) and this trade-off must be considered when choosing between data sources.

LULC change definitions. The time period after which a change in LULC is consid-
ered permanent must be determined. For example, shifting cultivation, common
practice in smallholder agriculture, results in cycles of cultivation and fallow
periods that vary year to year, yet can resemble managed or secondary forest-
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cover when observed over the long term (Houghton et al. 2012). These tempo-
rary changes in land-cover (e.g., from annual cropping to secondary forests) can
be misinterpreted as afforestation or deforestation depending on the timing of
sampling or image acquisition if they are not considered across their entire cycle
with sufficiently frequent measurements (DeFries et al. 2007). One approach to
account for fluctuating carbon stocks associated with shifting cultivation is to
calculate time-averaged carbon stocks for a given land-use system (Bruun et al.
2009; Palm et al. 2005).

Other considerations. Many studies have found that land-use is often influenced by
land features. For example, farmers may choose to cultivate areas with fertile, car-
bon-rich soils (e.g., Aumtong et al. 2009; Ellis and Ramankutty 2008; Jiao et al.
2010) or reduce fallow periods when the soil fertility is high (Roder et al. 1995)
and leave forests intact only in areas with poor soils. This preferential selection can
make it difficult to determine that land-use is in fact causing a change in soil carbon
stocks, and not the other way around (soil carbon stocks influencing land-use).
Repeated sampling may be required to observe carbon stock changes resulting
directly from LULC conversion (Bruun et al. 2009). The effects of prior land-use
on future carbon sequestration potential may also be significant (see Eaton and
Lawrence 2009; Hughes et al. 1999). While difficult to quantify, these delayed
fluxes can be included when considering LULC transitions (e.g., a forest converted
from agriculture may not store the same amount of carbon as a forest converted
from a pasture). Finally, complications can arise from temporal mismatching, for
example if biophysical or social data are collected in a separate time period from
satellite imagery. There may be benefits from matching the timing of data acquisi-
tion on various factors (Rindfuss et al. 2004).

3.2.3 LULC Classification and Change Detection
LULC Category Definition

Regardless of the Approach used to generate activity data, LULC categories must be
clearly and objectively established and LULC categories, subcategories, and strata
should be mutually exclusive and totally exhaustive (Congalton 1991) with clear
definitions of transitions from one class to another. (Note that sophisticated analysis
methods using non-discrete, probabilistic or “fuzzy” classification do exist (e.g.,
Foody 1996; Southworth et al. 2004), but are beyond the scope of this chapter). For
example, forests are generally defined based on a threshold value of minimum area,
height and tree crown cover and the Designated National Authority (DNA) for each
country can aid in defining LULC category definitions (GOFC-GOLD 2014).
Objective definitions are especially important in smallholder landscapes where shift-
ing cultivation and fallow rotations are common and transitions between LULC
classes may not be straightforward. Furthermore, since smallholder landscapes often
consist of small and heterogeneous land uses, it is possible that sampling points may
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fall into more than one LULC category. Systematic, transparent, and objective meth-
ods are needed to determine to which LULC category a sampling point belongs
(Maniatis and Mollicone 2010).

The IPCC Agriculture, Forestry, and Other Land-Use (AFOLU) Guidelines
(2006) define the following six broad land-use categories:

e Forest Land
e Cropland

e Grassland

e Wetlands

¢ Settlements
e Other Land

These top-level classes were designed to be broad enough to encompass all land
areas in a country and allow for consistent and comparable reporting between coun-
tries. Monitoring activities can further divide these classes into conversion catego-
ries (i.e., Forest Land converted into Cropland, Wetlands converted into Settlements).
For REDD+ GHG inventories and Tiers 2 and 3 reporting, it is likely that these
top-level classes must be further divided into subcategories and/or stratified to
allow for disaggregation of carbon stocks and improved estimation accuracy.
Subcategories refer to unique LULCs within a category (e.g., secondary forest,
within Forest Land) that impact emissions and for which data are available.
Identification of subcategories can greatly reduce uncertainty of carbon stock esti-
mates. For example, Asner et al. (2010) found that secondary forests held on aver-
age 60-70 % less carbon than intact forests in the Peruvian Amazon, and other
studies have found similarly large differences in carbon stocks between forest types
(e.g., Eaton and Lawrence 2009; Saatchi et al. 2007), highlighting the importance of
forest subclasses. Secondary forests, a significant LULC class in smallholder land-
scapes, are estimated to make up more than half of tropical forested areas and can
be an important source or sink of carbon (Eaton and Lawrence 2009; Houghton
et al. 2012). Therefore, distinguishing between secondary forests, bush-fallows, and
undisturbed forests, while often challenging, will likely result in more accurate car-
bon stock estimates.

Stratification within LULC categories and subcategories can be based on any
number of factors significant to emission estimation such as climate, ecological
zone, elevation, soil type, and census data (e.g., population, management prac-
tices) (see Stratification, below). Final LULC categories and strata will depend on
project location, climate and ecological factors, data availability, analysis capac-
ity, and other factors. Ideally, however, subcategories or strata can be aggregated
to correspond with the six broad land-use categories listed above to maintain con-
sistency between country or project inventories. Designation of LULC classes
and strata will also depend on the IPCC Approach chosen to represent land-use
area data. To meet Approaches 2 and 3, data on conversion between LULC cate-
gories and strata must be available, potentially limiting the number of possible
subcategories and strata.
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LULC Classification, Mapping, and Tabulation

Non-spatially explicit methods for collecting activity data (Approaches 1 and 2)
result in tables of land area totals by LULC category for a given point in time.
Depending on how data are collected, these results can be aggregated to political or
geographic boundaries and incorporated into existing maps. The data themselves
are not spatially explicit in their disaggregated form and therefore exact patterns of
land-use cannot be interpreted within the spatial unit of aggregation (Table 3.1).
The original data will generally come from LULC surveys, census data, existing
maps or a combination of these. Therefore uncertainty associated with Approaches
1 and 2 will depend in large part on the quality of the sampling methods used to
collect the original data. Costs could range greatly depending on the size of the
project area, availability of existing data, heterogeneity of the landscape, and acces-
sibility, but in general Approaches 1 and 2 can be low-cost options, especially for
smaller projects.

Spatially explicit methods for generating activity data (Approach 3) use a com-
bination of remote sensing and field-based sampling to develop a wall-to-wall clas-
sified LULC map with which LULC category areas can be totalled. Wall-to-wall
maps provide the opportunity for interpolation between data points using GIS soft-
ware and the development of spatially explicit polygons and/or individual pixels
assigned to various LULC categories. In this manner activity data can be efficiently
calculated, overlaid with ancillary data for stratification, and integrated with emis-
sion factors to quantify and analyze GHG emissions/reductions, their spatial vari-
ability, and drivers. Many methods exist to classify LULC, but they can be grouped
into three main categories: visual interpretation, unsupervised classification, and
supervised classification (Box 3.2). Additionally, a number of pre- and/or post-
processing steps may also be required to ensure accurate results. Choice of classifi-
cation methods and image processing will depend on available resources, technical
expertise, imagery, location, and available software. Greater detail on specific
methodologies is presented on the associated website. Whichever methods are cho-
sen for preprocessing, classification, and post-processing, they should be transpar-
ent, repeatable by different analysts, and results should be assessed for accuracy
(GOFC-GOLD 2014).

Stratification

Once LULC classes have been identified and imagery classified, stratification by
one or more variables may be desirable to improve estimation of carbon stocks,
GHG emissions and reductions, and/or baseline development. The primary goal of
stratification is to minimize the variability of carbon stock estimates within LULC
categories (Maniatis and Mollicone 2010). The most basic form of carbon stock
stratification is the development of subcategories (e.g., secondary forest versus
mature forest; tree crops versus annual crops). Additional datasets and/or more
intensive sampling may be required to identify subcategories, which may increase costs,
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Box 3.2 General LULC Classification Methods Using Remote
Sensing Data

Visual interpretation

The simplest method of LULC classification is visual interpretation. In this
method, a person familiar with the landscape and the appearance of LULC
classes in remotely sensed imagery, manually interprets and classifies poly-
gons around different land-covers. This method can be quite accurate but may
not be precisely repeatable and can result in high uncertainty if comparisons
are made between maps classified by different people. However systematic
approaches to visual interpretation can increase accuracy and repeatability
(e.g., Achard et al. 2002; Ellis 2004; Ellis et al. 2000).

Unsupervised classification

This method is fully automated and classification occurs without direct user
intervention, although parameters such as the number of classes to be identi-
fied can be set by the user. Unsupervised classification algorithms cluster pix-
els into spectrally similar classes and very small spectral differences between
classes can be identified (Vincikova et al. 2010). This method can be useful for
exploring the number and distinguishability of potentially identifiable classes.

Supervised classification

Supervised classification relies on the training data that is used to calibrate
automated or semiautomated classification algorithms. Training data may be
obtained through field sampling, separate higher-resolution remote sensing
imagery or from within the original image. Ideally training points will be
chosen in a statistically rigorous way (e.g., random, stratified, systematic) and
spatial and temporal factors should be considered (Sect. 3.2.2, Spatial
Considerations and Temporal Considerations).

* Pixel-based supervised classification. Pixel-based supervised classification
is one of the most commonly used classification methods. It uses spectral
information for placing individual pixels into classes. Algorithms use train-
ing data and predetermined classes identified by the user to classify pixels.
Statistical methods such as signature separability functions can be used to
evaluate the quality of training of data and improve classification accuracy
(Moreno and De Larriva 2012). One drawback to pixel-based classification,
be it supervised or unsupervised, in smallholder agriculture landscapes is
the problem of mixed pixels where individual pixels encompass multiple
LULCs. Spectral mixture analysis (SMA), also called spectral unmixing,
can overcome this problem by assigning individual pixels an estimated pro-
portional value of multiple LULC classes (Quintano et al. 2012). SMA can
improve classification accuracy in heterogeneous landscapes but requires
significant technical expertise and expensive GIS software.

* Object-based classification. The primary goal of object-based classification
is to identify MIUs on which to base classification criteria (Castillejo-
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Box 3.2 (continued)

Gonzilez et al. 2009). In pixel-based classification, the pixel is the MIU
whereas object-based methods quantitatively group pixels that are spec-
trally similar and spatially adjacent to create new MIUs representing patches
or parcels of homogenous land-covers. Classification is then carried out on
individual objects using a combination of spatial and spectral informa-
tion. Object-based techniques combined with high-resolution imagery
have not only been shown to outperform pixel-based methods in highly
heterogeneous landscapes (e.g., Moreno and De Larriva 2012; Perea et al.
2009) but also require extensive technical expertise, time, and specialized
GIS software.

* Other supervised classification techniques— Additional, relatively complex
techniques such as regression/decision trees, neural networks, hierarchical
temporal memory (HTM) networks (Moreno and De Larriva 2012), and
support vector machines (Huang and Song 2012) have also shown success
in improving classification accuracy in heterogeneous landscapes.

and transparent objective methods should still be used to define subcategories.
However, stratification can reduce overall costs if monitoring activities can be
targeted toward subcategories in which LULC transitions and carbon stock changes
are expected (GOFC-GOLD 2014). Further stratification can be done using bio-
physical (e.g., slope, rainfall, soil type) and socioeconomic (e.g., population) datasets.
Combining datasets requires either spatially explicit data (Approach 3) or datasets
following Approaches 1 or 2 that have been aggregated to spatially defined units
such as administrative boundaries. (See Lesschen et al. (2005) for a good overview
on combining datasets for analysis of LULC change in farming systems.)

Stratification should only be carried out to the degree that chosen strata improve
carbon stock estimates and reduce uncertainty. Statistical methods such as multi-
variate and sensitivity analyses exist to assess the quality of potential strata. Project
objectives, timeframe, and the temporal and spatial resolution of available data will
also impact the choice of LULC subcategories and strata.

LULC Change Detection

When using activity data generated with Approaches 1 and 2, change detection can
be as simple as carrying out basic arithmetic to calculate the change in total land
area of each LULC class at two or more points in time. Approach 2 will include
results on the specific transitions observed (e.g., from forest to cropland versus from
forest to pasture) and results are generally reported using a land-use conversion
matrix (IPCC 2006; Ravindranath and Ostwald 2008).

Spatially explicit methods (Approach 3) to detect changes in LULC can be
separated into three general categories: post-classification comparison, image
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comparison approach, and bitemporal classification approach. Post-classification
comparison is the most straightforward approach and consists of first conducting
separate LULC classifications on two or more images and comparing the results to
detect change. Post-classification change detection is popular due to the fact that
hard classification for single-date imagery is often required for other purposes or
preexisting classified images are being used for one or more dates (van Oort 2007).
One major drawback to this approach is that each image will contain uncertainty
stemming from misclassification, which could result in significant errors in the
change map from misidentification of LULC change. The image comparison
approach attempts to reduce these errors by comparing the two unclassified images
and identifying pixel-based change thresholds through methods such as differenc-
ing, ratioing, regression, change vector analysis, and principal component analysis
(Huang and Song 2012). Bitemporal classification goes a step further by analyzing
multiple images simultaneously and applying one of a variety of algorithms to pro-
duce a final map with change classes in a one-step process (Huang and Song 2012).
The two latter approaches can be more adept at detecting specific changes of inter-
est and more subtle changes (van Oort 2007) and may reduce uncertainty in cases
where classification accuracy is low.

3.3 Developing a Baseline

Activity data are monitored at two or more points in time to assess LULC change.
However, this change must be compared against a “business as usual” scenario to
determine additionality (i.e., to define what would have occurred in the absence of
project interventions). Only by comparing observed changes against a well-developed
and justified baseline can we be sure that project activities resulted in changes that
would not have occurred otherwise. Two general methods exist to develop a com-
parative baseline of LULC change: the development of a baseline scenario or the
monitoring of a reference region.

3.3.1 Baseline Scenarios

A baseline scenario predicts the LULC changes that would occur within the
inventory area in the absence of interventions by creating a “business as usual”
scenario from a variety of input data (Table 3.3). This scenario can be developed on
a project-by-project basis using conditions and information particular to the project
(project-specific approach) or for a specific geographic area, which may extend
beyond the project area boundaries (regional baseline approach, also called the per-
formance standard approach). Either approach can be based on historical data and/or
logical arguments about economic opportunities that could influence future LULC
change (Sathaye and Andrasko 2007) and examples of both approaches are given in
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Table 3.3 Summary of activities for developing a baseline at various uncertainty levels

Higher Mid-range
Activity uncertainty uncertainty Lower uncertainty Key references
Baseline Logical Projection of Modelled baseline Brown et al.
scenario arguments or historical LULC developed using (2007);
development | simple trend trends using empirically derived Greenhalgh
analysis based | multitemporal predictor variables et al. (2006);
on limited historical data from multitemporal Sathaye and
historical data | and/or simple historical datasets; or | Andrasko
predictor Monitoring of a highly | (2007)
variables; or similar reference
monitoring of a region with clearly
similar reference defined comparative
region thresholds
Baseline Logical Investment, barrier | Development of Greenhalgh
justification | arguments and/ | and/or common alternative baseline et al. (2006);
or qualitative practice analysis scenarios with VCS
investment, using limited investment and/or Association
barrier or quantitative barrier analysis and (2012)
common analysis common practice
practice analysis using
analysis quantitative
approaches

Table 3.4. The project-specific approach is often based on logical arguments where
the baseline scenario is identified as the scenario facing the fewest barriers
(Greenhalgh et al. 2006). This approach requires the development of multiple sce-
narios for the project area and requires economic-related data to evaluate which is
most likely to occur. The regional baseline approach uses time-based estimates to
project future carbon stock changes. This approach may require more GHG-related
and spatially explicit data to enable quantitative analysis of trends in LULC change
and GHG emissions/removals (Greenhalgh et al. 2006). The regional approach can
result in more credible and transparent baselines and reduce costs when multiple
projects are proposed within the same region (Brown et al. 2007; Sathaye and
Andrasko 2007). An example of a potentially very useful dataset for identifying
historical trends of forest-related disturbances is the high-resolution global forest
change map recently published by Hansen et al. (2013).

Modelling future LULC changes based on historical and current data can be done
using solely historical trends in percent change in land area or by incorporating driv-
ers of LULC change into predictive models. Projection of historical LULC change
trends requires reliable activity data for at least two points in time, preferably at the
beginning and end of the historical period. Drivers used in modelled baselines can be
simple metrics (e.g., population growth) to meet Tiers 1 and 2, or a more complex
combination of spatially explicit biophysical and socioeconomic factors to meet
Tiers 2 and 3. Drivers can greatly improve baseline development by capturing peri-
odic fluctuations or variations across a landscape that may not be captured using
trend analysis (Sathaye and Andrasko 2007). For example historical deforestation
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trends may not continue into the future if certain thresholds have been reached or
land-use determinants such as road networks have changed (Chomitz and Gray
1996). Incorporating such factors into models can improve trend prediction and
many different models exist to analyze the influence of drivers and set baselines
(e.g., Brown et al. 2007). Reporting should describe the model and drivers in detail
and the chosen model should be transparent, include empirical calibration and vali-
dation processes and generate uncertainty estimates (Greenhalgh et al. 2006).

To qualify for carbon crediting under the VCS, Clean Development Mechanism
(CDM), REDD+ or other mechanisms, the baseline must generally be justified
using investment, barrier and/or common practice analysis (Greenhalgh et al.
2006;Tomich et al. 2001; VCS Association 2012). In other words, barriers to the
LULC changes sought by project activities or policies must be identified to show
that insufficient incentives exist to achieve the desired LULC changes without inter-
vention. Ideally multiple scenarios will be developed and evaluated to determine
which is the most credible and conservative baseline choice. Several temporal con-
siderations also exist related to both the historical period used to generate a baseline
scenario and the period for which the baseline is projected forward. Historical data
should be as relevant as possible to the projected period and major events (e.g., hur-
ricanes, fires) and policy changes (e.g., protected area designations) should be con-
sidered when acquiring historical data. A narrative approach exploring the story
behind historical LULC dynamics can further reveal relationships between observed
changes and the forces driving them (Lambin et al. 2003). The validity period for
the baseline (i.e., for how many years the baseline is considered valid and accurate)
should also be taken into account. Experience from other projects suggests that an
adjustable baseline approach is preferable. A common approach is to set a fixed
baseline for the first 10 years, at which point it is evaluated and adjusted as needed
(Brown et al. 2007; Sathaye and Andrasko 2007; VCS Association 2014).

3.3.2 Reference Regions

An alternative to developing a baseline scenario for the project area is to monitor a
separate reference region, a common approach among Voluntary Carbon Standard
(VCS) methodologies (e.g., VCS Association 2010 and others). The reference region
should be sufficiently similar to the project area to conclude that the trajectory of LULC
change observed in the reference region would also have occurred within the project
area in the absence of project activities. While exact requirements for identification of
areference region vary, in general the reference region must be significantly larger than
and demonstrably similar to the inventory area. In order to demonstrate similarity, key
variables must be compared which may include landscape features (e.g., slope, eleva-
tion, LULC distribution), ecological variables (e.g., rainfall, temperature, soil type) and
socioeconomic conditions (e.g., population, land tenure status, policies, and regula-
tions) (see VCS Association 2010). Transparent comparison procedures must be devel-
oped to set comparative thresholds for the reference region (e.g., average slope of the
reference region shall be within 10 % of the average slope of the inventory area).
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Monitoring a reference region may be a cost-effective option for small projects that
can easily identify an area similar to the project area. However larger projects, or proj-
ects working in a unique biophysical or sociopolitical environment, may find it difficult
to locate an appropriate reference region, or may find it cost-prohibitive to monitor one.

3.4 Calculating Carbon Stock Changes

In order to estimate GHG emissions and removals, carbon stock densities must be
quantified for each LULC category subclass and/or stratum. Carbon stock densities
may come from default values, national datasets, scientific studies or field sampling
and are generally given as tons of carbon per hectare (Mg C ha™') for individual or
combined carbon pools (Table 3.5).

3.4.1 Key Carbon Pools

The IPCC Guidelines (2006) define five carbon pools: living aboveground biomass,
living belowground biomass, deadwood, litter and soil organic matter (SOM). In the
case that data are not available for all carbon pools, key pools can be identified based
on their relative expected contribution to total carbon stock changes caused by possi-
ble LULC transitions. Thresholds are developed to delimit the minimum contribution
of total emissions from a pool to be defined as “key.” For example, a threshold could
be created stating that only pools representing more than 10 % of total carbon stocks
are considered key. Therefore it is possible that some pools will be key for certain
LULC classes but not for others. Identifying key pools can help target monitoring and
modelling efforts to minimize uncertainty and is required under IPCC reporting.

3.4.2 Initial Carbon Stock Estimates

Calculation of initial carbon stocks can be done in several ways ranging from the use
of simple arithmetic to running complex models. The simplest method is to assign a
single carbon stock density value (or range of values) to each LULC category and
multiply this value by the total area of each category. This method can be used with
activity data associated with any of the three Approaches. It is relatively straightfor-
ward and potentially low-cost, but may introduce high levels of uncertainty as it
assumes that there is no variability of carbon stocks within LULC categories.
Uncertainty can be reduced by taking into account additional drivers of carbon
stocks beyond just LULC categories. This can be done through stratification (Sect.
3.2.3) and/or modelling. Modelling approaches require data on carbon stocks and
rates of change, which can be obtained from default emission factors, scientific
research, or field measurements. Additional biophysical (e.g., slope, rainfall, soil
type) and socioeconomic (e.g., population) datasets may also be needed. A variety
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Table 3.5 Summary of activities for calculating carbon stock changes from LULC change at
various uncertainty levels

Activity
Define key
carbon
pools

Initial
carbon
stock
estimates

Monitoring
carbon
stock
changes

Higher
uncertainty

Key pools
identified using
international or
default data;

Same key pools
applied to all
LULC classes

Single carbon
stock density
applied to each
LULC class
based on global
or regional
default data

Process-based
method using
default
emissions
factors assigned
to LULC classes
and change
processes (e.g.,
deforestation)

Mid-range
uncertainty
Key pools
identified using
region-specific
or field-based
data

Key pools
defined
separately for at
least broad
LULC categories

Carbon stocks
stratified by
subclasses or
additional strata
and derived from
country-specific
data and/or field
sampling for key
carbon pools

Process-based
method using
emission factors
derived from
country- or
region-specific
data

Lower uncertainty

Key pools identified for
each LULC class using

field sampling, or

Data available for all

carbon pools

Spatially explicit
stratification and

modelling of carbon
stocks using empirically

derived drivers of

observed carbon stock

variability; or

Direct carbon stock
monitoring approaches
(e.g., using LiDAR,
RADAR, optical sensors)
Process-based method
using emission factors

derived from field

sampling within the
project area or research
activities in highly

similar areas

Stock-based methods
using multitemporal
carbon stock inventories

for key pools

Key references

GOFC-GOLD
(2014); IPCC
(2006, Volume
4, Chap. 2)

Goetz et al.
(2009);
GOFC-GOLD
(2014);
Greenhalgh

et al. (2006);
IPCC (2006)

Greenhalgh
et al. (2006);
Houghton

et al. (2012);
IPCC (2006,
Volume 4,
Chap. 2)

of models such as PROCOMAP, CO,FIX, CENTURY, ROTH, and others exist with
arange of complexity and data requirements. (See Ravindranath and Ostwald 2008
for a good comparison of several models.)

3.4.3 Monitoring Carbon Stock Changes

Carbon stock changes are estimated using one of two general methods: one process-
based and the other stock-based. The process-based method estimates the net addi-
tions to, or removals from, each carbon pool based on processes and activities that
result in carbon stock changes, such as tree harvesting, fires, etc. The stock-based
method estimates emissions and removals by measuring carbon stocks in key pools
at two or more points in time.
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Process-Based Method

The process-based method (sometimes called the gain-loss, IPCC default or emis-
sion factor method) estimates gains or losses of carbon in each pool by simulating
changes resulting from disturbance or recovery (Houghton et al. 2012). Changes in
LULC drive process-based models, and carbon stocks are re-allocated based on
observed or modelled LULC change. Gains are a result of carbon accumulation from
the atmosphere (e.g., in tree biomass) or transfers from another pool (e.g., from bio-
mass to SOC via decomposition). Losses are attributed to transfers to another pool or
emissions to the atmosphere as CO, or other GHGs (IPCC 2006, Volume 4, Chap. 2).
Additional emission factors can be developed for emitting activities that do not nec-
essarily affect the five carbon pools identified by the IPCC. These include, for
example, direct emissions from livestock, farm equipment or the production of non-
food products. Models and emission factors used in process-based methods can vary
in complexity and potentially meet any Tier requirements. IPCC default factors can
be used to achieve Tier 1 reporting requirements whereas country-specific or locally
derived research data combined with more complex modelling approaches are
required to meet Tier 2 and 3 requirements.

Stock-Based Method

The stock-based method (also called the bookkeeping, stock-difference, or stock-
change method) combines ground-based and/or remotely sensed data of measured
carbon stocks with data on changes in the total land area of each LULC class between
two or more points in time. For stock-based methods, carbon stock changes are mea-
sured independently of LULC change and are then multiplied by the total area of each
LULC class and stratum. Process-based methods model carbon stock changes based
on LULC changes. Depending on the spatial resolution of data, conversions might be
required to arrive at a carbon density (Mg C ha™') that is then combined with activity
data to estimate total emissions/removals. Typically, country-specific information is
required for use with the stock-based method and resource requirements for data
collection may be greater than process-based methods unless appropriate datasets
already exist. Stock-based methods often meet at least Tier 2 requirements, provided
activity data were generated according to Approach 2 or 3.

3.5 Assessing Accuracy and Calculating Uncertainty

In order to qualify for carbon crediting under mechanisms such as VCS, CDM, and
REDD+, final reporting of GHG emissions/removals associated with LULC change
must include uncertainty estimates (Maniatis and Mollicone 2010). Uncertainty
should be reported as the range within which the mean value lies for a given prob-
ability (e.g., a 95 % confidence interval) or the percent uncertainty of the mean
value, each of which can be calculated from the other (IPCC 2003). Errors will be
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introduced at every level of data collection. Analysis and assessment of accuracy
and uncertainty should be carried out for each step. Not only is this important for
reporting purposes, it can provide valuable information to project managers to
determine which steps contain the greatest sources of uncertainty, thereby encour-
aging cost-effective monitoring (e.g., Smits et al. 1999).

In this chapter we focus on estimating uncertainty associated with the collection
of activity data, detection of LULC changes, and linking of emission factors and/or
carbon stocks. Methods for assessing uncertainty related to the production of emission
factors and measurement of carbon stocks (e.g., calculating soil carbon in a forest)
are discussed elsewhere.

3.5.1 LULC Classification Accuracy Assessment

When remote sensing data are used to develop wall-to-wall LULC maps, two types of
error exist: errors of inclusion (commission errors) and errors of exclusion (omission
errors). Accuracy should be assessed using a statistically valid method, the most com-
mon method being statistical sampling of independent higher-quality validation sam-
ple units (e.g., pixels, polygons, sites) for comparison against classified sample units
(Congalton 1991) (Table 3.6). These validation samples can be taken from field obser-
vations, additional higher-resolution remote sensing imagery, or can be visually iden-
tified from within the original image provided they are independent from those used
during training. As with the selection of training data, validation sampling should be
done in a statistically sound and transparent manner. Stratified or proportional sam-
pling techniques may be desirable to improve accuracy and reduce costs. When using
field-based sampling to analyze current imagery, validation data should be collected
as close to the time of image acquisition as possible, ideally at the same time as
training data. Including farmers or other community members in the data collection
process can be an effective way to estimate past LULC for classification and valida-
tion of historical imagery, while at the same time empowering stakeholders and
addressing conservation issues (e.g., Sydenstricker-Neto et al. 2004).

The accuracy of classified sample units compared against “real-world” validation
sample units can be presented in an error matrix, also called a confusion matrix. This
helps visualize errors, identify relationships between errors and LULC categories, and
calculate indices of accuracy and variation (Congalton 1991). Classification accuracy
refers to the percentage of sample units correctly classified and can be calculated as
commission and omission errors for each LULC class as well as an overall accuracy
for all classes (Table 3.7). These classification accuracies can then be used as an
uncertainty estimate to discount carbon credits associated with LULC change. For
example, to maintain conservativeness of carbon credit estimates the VCS Association
VMO006 (2010) uses the smallest accuracy of all maps as a discount factor for carbon
credits. In the hypothetical example from Table 3.7, this would result in carbon credits
being discounted by 25 % (multiplied by a discount factor of 0.75). Representing
accuracy using an error matrix also provides an opportunity to assess which LULC
categories are most often confused. For example, cropland in smallholder landscapes
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Table 3.6 Summary of activities for assessing accuracy and calculating uncertainty at various
uncertainty levels

Activity
LULC area
estimates
and change
detection

Carbon stock
estimates
Combining
uncertainty
estimates

Higher
uncertainty

Assessment of
data collection
procedures to
ensure data
quality, but
without the
use of
methods to
quantify
uncertainty

Mid-range
uncertainty
Assessment of data
quality through
systematic analysis
of data collection
procedures; or error
matrix with Kappa
coefficient based on
validation points
from limited field
ground-truthing or

Lower uncertainty

Confusion matrix
with Kappa
coefficient based
on validation
points from
ground-truthing
in the field or
higher-quality
imagery
Calculation of

marginally confidence
hlgher-quahty intervals for
imagery LULC category

areas and changes
in area

Key references
Congalton (1991);
IPCC (2006,
Volume 4, Chap. 3)

Varies by carbon pool; See Chaps. 6 and 7 for more information

Simple error
propagation

Error propagation
using more complex
equations and
controlling for
correlation of input
data

Monte Carlo
simulations or
other
bootstrapping
techniques

GOFC-GOLD
(2014); IPCC
(2003);
Ravindranath and
Ostwald (2008);
Saatchi et al. (2007)

Table 3.7 Hypothetical error matrix showing the number of pixels mapped and validated (ground-
truthed) by LULC class. Values in bold highlight the number of correctly mapped pixels and the
row and column totals, which are used to calculate producer’s and user’s accuracy

Mapped
classes

Forest
Cropland
Grassland
Wetland
Settlements
Other land
Total

Forest
Cropland
Grassland
Wetland
Settlements
Other land

Ground truth classes

Forest
900 50
50 750
30 60
30 30
0 20
0 20
1010 930

Cropland | Grassland

Wetland | Settlements

50 0 0
150 30 20
810 70 20

30 390 0

20 10 420

0 0 30
1060 500 490

Producer’s accuracy
(omission error)

900/1010 89 %
750/930 81 %
810/1060 76 %
390/500 78 %
420/490 86 %
450/510 88 %

User’s accuracy
(commission error)

900/1000 90 %
750/1000 75 %
810/1000 81 %
390/500 78 %
420/500 84 %
450/500 90 %

Other land | Total

0 1000
0 1000
10 1000
20 500
30 500
450 500
510 4500

Overall accuracy
3720/4500

83 %
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is often misclassified due to small farm sizes and its resemblance to bare soil (due to
minimal reflectance from young crops) or secondary forests (due to intercropping
with tree species commonly found in secondary forests) (e.g., Sydenstricker-Neto
et al. 2004). Other accuracy indicators include the kappa coefficient or KHAT statistic,
root mean squared error (RMSE), adjusted R?, Spearman’s rank coefficient and others
(Congalton 1991; Jain et al. 2013; Lesschen et al. 2005; Smits et al. 1999).

3.5.2 LULC Change Detection Accuracy Assessment

The accuracy of LULC change detection can be assessed using methods similar to those
used to validate single scene LULC classification, but additional considerations exist.
When making post-classification comparisons using two independently classified
images, the accuracy of each individual classification should be assessed in addition to
the accuracy of the change image. It is usually easier to identify errors of commission in
change products because often only a small proportion of the land area will have expe-
rienced change, and often within a limited geographic area (GOFC-GOLD 2014).
Unique sampling methodologies may therefore prove more cost-effective to validate the
relatively rare event of changes in LULC within an image (Lowell 2001). A transition
error matrix can be used to report the accuracy with which transitions between LULC
categories are detected. This allows for assessment of uncertainty for each transition
(e.g., forest to cropland, forest to grassland) and for partitioning of uncertainty attribut-
able to the change detection process versus classification (van Oort 2007).

3.5.3 Uncertainty Associated with Estimating Carbon Stocks

Uncertainty estimates should be developed for key carbon pools within each LULC
category. Uncertainty of carbon stocks using the stock-based method will be related
to sampling. The process-based method will contain uncertainty estimates derived
from scientific literature, model accuracy or other sources. Factors such as the scale
of aggregation, stratification variables, and the spatial or temporal considerations
discussed above can all influence the uncertainty associated with integrating carbon
stocks and activity data.

3.5.4 Combining Uncertainty Values and Reporting Total
Uncertainty

Combining uncertainty estimates for activity data, LULC change detection and
emissions factors or carbon stocks can be done several ways, ranging from simple
error propagation calculations (Tier 1) to more complex Monte Carlo simulations,
also called bootstrapping or bagging (Tiers 2 and 3). Several approaches exist for



3 Determining Greenhouse Gas Emissions and Removals Associated with Land-Use... 63

calculating error propagation. For example, different equations are recommended
if input data are correlated (e.g., the same activity data or emission factors were
used to calculate multiple input factors that are to be summed) or if individual
uncertainty values are high (e.g., greater than 30 %) (GOFC-GOLD 2014; IPCC
2003). Monte Carlo simulations select random values within probability distribu-
tion functions (PDF) developed for activity data and associated carbon stock esti-
mates to calculate corresponding changes in carbon stocks. The PDFs represent the
variability of the input variables and the simulation is undertaken many times to
produce a mean carbon stock-change value and range of uncertainty (see IPCC
2003 and citations within for more detailed information on running Monte Carlo
simulations). Simulation results can be combined with classification accuracies to
compute uncertainties for each pixel. This allows exploration of the variation of
accuracy by LULC class or stratum, and where to target future measurements to
achieve the greatest reductions in overall uncertainty (Saatchi et al. 2007).
Generally speaking, Monte Carlo simulations require greater resources than error
propagation equations, but both methods require quantitative uncertainty estimates
for activity data, LULC changes, and carbon stocks.

3.6 Challenges, Limitations, and Emerging Technologies

Monitoring LULC change and associated GHG emissions/reductions in a cost-
effective manner remains a challenge in heterogeneous landscapes such as those
dominated by smallholder agriculture. Monitoring change in management within
LULC categories can be even more challenging, yet management is often a key
component of smallholder carbon projects. Technologies are emerging to directly
monitor carbon stocks (namely aboveground biomass), which could overcome
some of these challenges. For example LiDAR shows promise for accurate direct
estimation of vegetation structure, aboveground biomass, and carbon stocks (Goetz
and Dubayah 2011; Goetz et al. 2009). While direct measurement methods are
generally still in the research phase and may be cost-prohibitive for most projects,
they may prove especially useful for smallholder settings as they can improve
accuracy by removing the error associated with misclassification of LULC, a
potentially large source of uncertainty in heterogeneous landscapes. In the end, it
is difficult to recommend a single methodological approach to monitoring LULC
in smallholder landscapes as optimal methods will depend on the project area, size,
available resources, time period, interventions, and other factors. An overall sum-
mary of the general methods discussed in each section of this chapter is presented
in Table 3.8. Time should be taken to assess these methods and their associated
trade-offs, read the relevant key references and stay abreast of emerging remote
sensing options to identify the most appropriate methodology for specific project
conditions.
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