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    Abstract     This chapter reviews methods and considerations for quantifying green-
house gas (GHG) emissions and removals associated with changes in land-use and 
land-cover (LULC) in the context of smallholder agriculture. LULC change con-
tributes a sizeable portion of global anthropogenic GHG emissions, accounting for 
12.5 % of carbon emissions from 1990 to 2010 (Biogeosciences 9:5125–5142, 
2012). Yet quantifying emissions from LULC change remains one of the most 
uncertain components in carbon budgeting, particularly in landscapes dominated by 
smallholder agriculture (Mitig Adapt Strateg Glob Chang 12:1001–1026, 2007; 
Biogeosciences 9:5125–5142, 2012; Glob Chang Biol 18:2089–2101, 2012). 
Current LULC monitoring methodologies are not well-suited for the size of land 
holdings and the rapid transformations from one land-use to another typically found 
in smallholder landscapes. In this chapter we propose a suite of methods for esti-
mating the net changes in GHG emissions that specifi cally address the conditions of 
smallholder agriculture. We present methods encompassing a range of resource 
requirements and accuracy, and the trade- offs between cost and accuracy are spe-
cifi cally discussed. The chapter begins with an introduction to existing protocols, 
standards, and international reporting guidelines and how they relate to quantifying, 
analyzing, and reporting GHG emissions and removals from LULC change. We 
introduce general considerations and methodologies specifi c to smallholder agricul-
tural landscapes for generating activity data, linking it with GHG emission factors 
and assessing uncertainty. We then provide methodological options, additional con-
siderations, and minimum datasets required to meet the varying levels of reporting 
accuracy, ranging from low-cost high-uncertainty to high-cost low-uncertainty 
approaches. Technical step-by-step details for suggested approaches can be found in 
the associated website.   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191281013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sean.smukler@ubc.ca


38

3.1      Introduction 

 Land-use and land-cover (LULC) change contributes a sizeable portion of global 
anthropogenic GHG emissions, accounting for an estimated 12.5 % of carbon emis-
sions from 1990 to 2010 (Houghton et al.  2012 ). Signifi cant demographic and socio-
economic pressures are exerted on  carbon storing land   uses such as forests in the 
tropics yet distribution and rates of change (e.g., loss of forests and agricultural inten-
sifi cation) in tropical smallholder landscapes remain very uncertain (Achard et al. 
 2002 ). Much of this uncertainty stems from the substantial heterogeneity of LULC 
that exists, often at very fi ne spatial scales, in such landscapes. Even within LULC 
categories, signifi cant heterogeneity in carbon stocks often occurs as a result of driv-
ers specifi c to smallholder agriculture, such as fallow rotations, uneven canopy age 
distribution, and integrated crop–livestock systems (Maniatis and Mollicone  2010 ; 
Verburg et al.  2009 ). These factors result in the need for monitoring strategies differ-
ent from those developed for more commonly monitored LULC  transitions   such as 
large-scale deforestation and urban expansion (Ellis  2004 ). Here we present general 
considerations and a suite of methods for estimating net changes in GHG emissions 
that specifi cally address the conditions of smallholder agriculture. In the process we 
illustrate the relative trade-offs between costs of analysis, precision, and accuracy. 

 There are four basic steps required to calculate GHG emissions/ removals   from 
LULC change:

•     Determine change in LULC . Changes in the areal extent of LULC classes must 
be determined by comparing data collected from two or more points in time.  

•    Develop a baseline . Observed changes in carbon stocks must be compared against 
a “business as usual” scenario of what would have happened in the absence of 
project activities. This step is generally carried out by either developing a baseline 
scenario or through direct observation of a reference region.  

•    Calculate carbon stock changes . Carbon stocks associated with LULC classes 
must be quantifi ed for each point in time or emission factors must be used to 
calculate carbon stock changes and associated GHG emissions or removals.  

•    Assess accuracy and calculate uncertainty . Accuracy of each step must be assessed 
in order to determine the uncertainty associated with fi nal emission/removal 
estimates associated with LULC changes.    

 It is important to note that these steps are not necessarily chronological. For 
example a baseline scenario could be developed prior to LULC change detection. 
Accuracy assessments should be done concurrently with each phase of data collec-
tion and analysis. 

 In order to carry out the above steps, two basic types of data are required, defi ned 
by the Intergovernmental Panel on Climate Change ( IPCC  ) as activity data and  emis-
sion factors      (IPCC  2006 ).  Activity data      refer to the areal extent of chosen LULC 
categories, subcategories, and strata and are generally presented in hectares.  Emission 
factors      refer to the data used to calculate carbon stocks associated with activity data 
and are usually presented as metric tons of carbon (or carbon dioxide equivalents) 
per hectare. Emission factors may not be required for all carbon pools when carbon 
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stock densities are inventoried directly using fi eld sampling and/or remote sensing 
techniques. The IPCC Guidelines ( 2006 ) also lay out three tiers of methods used to 
calculate GHG emissions and reductions, which increase not only in precision and 
accuracy but also in data requirements and complexity of analysis.  Tier 1      requires 
country-specifi c activity data but uses IPCC default emission factors that can be 
found in the IPCC Emission Factor Database (IPCC n.d.) and analysis is generally 
simple and of low cost.  Tier 2   uses similar methods to Tier 1 but requires the use of 
some region- or country-specifi c emission factors or carbon stock data for key car-
bon pools and LULC categories (more information on key pools can be found in 
Sect.  3.4.1 ).  Tier 3   requires high-resolution activity data combined with highly 
disaggregated inventory data for carbon stocks collected at the national or local 
level and repeated over time. 

 Collection of data to generate emission factors or calculate carbon stock densities 
is covered elsewhere in this book. The focus of this chapter is on the generation of 
activity data and the various methods available to link emission factors and/or car-
bon stock densities with activity data for estimating total carbon stocks and GHG 
emissions/removals at the landscape-scale. The following sections provide an over-
view of the general activities for each of the four steps required to calculate GHG 
emissions/reductions from LULC change, with a focus on smallholder agriculture 
landscapes. Trade-offs between uncertainty and cost are addressed and a variety of 
references—including existing protocols, scientifi c research, and review papers—are 
cited. Summary tables are presented at the beginning of each section, with a complete 
table at the end of the chapter (Table  3.8 ).  

3.2     Determining Change in LULC 

   The IPCC  Guidelines   ( 2006 ) outline three specifi c  Approaches   to monitoring 
activity data (described in detail below). The three Approaches refer to the repre-
sentation of land area and will infl uence the ability to meet the three IPCC Tiers, 
which indicate the overall uncertainty of GHG emission/reduction estimates 
(Table  3.1 ). In general, progressing from Approach 1 to 3 increases the amount of 
information associated with activity data but requires greater resources. It should be 
noted that increasing the information contained within activity data does not guar-
antee a reduction in uncertainty. Accuracy will ultimately depend on the quality of data 
and implementation of the Approach as much as the Approach itself (IPCC  2006 ). 
However, progressing from Approach 1 to 3 provides the opportunity for reducing 
uncertainty and meeting higher Tier requirements.

    Approach 1  uses data on total land-use area for each LULC class and stratum but 
 without  data on conversions between land uses. The result of Approach 1 is usually 
a table of land-use areas at specifi c points in time and data often come from aggre-
gated household surveys or census data. Results are not spatially explicit, only allow 
for the calculation of net area changes and do not allow for analysis of GHG emis-
sions/removals for land remaining within a LULC category or the exploration of 
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drivers of LULC change. Therefore Approach 1 may not be suitable for carbon 
crediting under mechanisms such as the  Verifi ed Carbon Standard (VCS)   or 
 Reducing Emissions from Deforestation and Forest Degradation (REDD+)   
(see GOFC-GOLD  2014 ). 

  Approach 2  builds on Approach 1 by including information on conversions from 
one LULC class to another, but the data remain spatially non-explicit. This provides 
the ability to assess changes both into and out of a given LULC class and track 
conversions between LULC classes. A key benefi t of Approach 2 is that emission 
factors can be modifi ed (if data are available) to refl ect specifi c conversions from 
one LULC category to another. For example, forests with a long history of prior 
cultivation may store less carbon than undisturbed forests of the same age (e.g., 
Eaton and Lawrence  2009 ; Houghton et al.  2012 ). Such factors cannot be taken into 

     Table 3.1    Summary of activities to determine change in LULC at various uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty 

 Key 
references 

 Data 
acquisition 

 Approach 1 or 
2 with minimal 
or no data 
collection 
(using existing 
aggregated 
datasets such 
as census or 
existing maps) 

 Approach 2 with 
disaggregated 
datasets (existing or 
developed) 

 Approach 3 with 
mid-resolution 
imagery and 
supplementary data 

 De Sy et al. 
( 2012 ); IPCC 
( 2006 ); 
Ravindranath 
and Ostwald 
( 2008 ) 

 Approach 3 with 
coarse or mid-
resolution imagery 

 Approach 3 with very 
high- resolution 
imagery 

 LULC 
classifi cation 

 Broad LULC 
categories 
developed 
through 
subjective 
(non- 
empirical) 
survey 
methods; not 
spatially 
explicit 

 Broad LULC 
categories with 
simple subclasses or 
strata 

 Empirically derived 
LULC categories and 
strata 

 GOFC-GOLD 
( 2014 ); IPCC 
( 2006 ); 
Vinciková 
et al. ( 2010 )  Classifi ed using 

visual interpretation 
or pixel-based 
techniques with 
limited or imagery-
based training data; 
spatially explicit 

 Supervised 
classifi cation using 
pixel-based, 
object-based or 
machine learning 
techniques with 
fi eld-derived training 
data; spatially explicit 

 LULC 
change 
detection 

 Arithmetic 
calculation of 
change in total 
land area for 
each LULC 
class using 
data generated 
by Approach 1 

 Arithmetic 
calculation of 
change in total land 
area for each LULC 
class and transitions 
between LULC 
classes using data 
generated by 
Approach 2 or; 
post-classifi cation 
comparison with 
coarse or mid-
resolution imagery 

 Spatially explicit 
change detection 
using post- 
classifi cation 
comparison, image 
comparison, 
bitemporal 
classifi cation or other 
GIS-based 
approaches 

 Huang and 
Song ( 2012 ); 
van Oort 
( 2007 ) 
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account using Approach 1. The results of Approach 2 can be expressed as a land-use 
conversion matrix of the areal extent of initial and fi nal LULC categories. 

  Approach 3  uses datasets that are spatially explicit and compiled through sam-
pling and wall-to-wall mapping techniques. Remotely sensed data (e.g., imagery 
from aerial- or satellite-based sensors) are often used in combination with georefer-
enced sampling such as fi eld or household surveys. Data are then analyzed using 
 geographic information systems (GIS)   and can be easily combined with other spa-
tially explicit datasets to stratify LULC categories and emission factors. This can 
greatly improve the accuracy of emission/removal estimates, especially for large 
areas, and allows for statistical quantifi cation of uncertainty. Approach 3 can be an 
effi cient way to monitor large areas. However it may require greater human and 
fi nancial resources, which could be cost-prohibitive for smaller projects, especially 
if the spatial resolution of freely available or low-cost imagery is too coarse to detect 
LULC changes. (See Sect.  3.2.2  for more information about remotely sensed data.)   

3.2.1      Setting Project Boundaries   

  The extent, location, and objectives of monitoring will all infl uence the appropriate 
choice of methods for analyzing LULC change and associated GHG emissions and 
reductions. While activity data may or may not be spatially explicit, the extent 
(i.e., boundaries) of the area monitored must be explicitly and unambiguously 
defi ned and should remain the same for all reporting periods. Several factors should 
be considered when defi ning the extent of the monitoring area. 

  Baseline Development and Data Availability . The availability of existing data 
(e.g., historical and/or cloud-free satellite imagery, forest inventories, research stud-
ies, census data) can determine the area for which a justifi able baseline scenario can 
be developed and therefore the project extent may need to be adjusted accordingly 
(Sect.  3.3 ). In some cases, it might be useful to adhere to political divisions rather 
than geographic boundaries if socioeconomic data are available in political units that 
do not correspond with geographic boundaries such as a watershed or ecoregion. If a 
reference region is to be used, it is important to consider whether one of appropriate 
size and characteristics can be found to match the chosen inventory extent (Sect. 
 3.3.2 ). For example the reference region may need to be 2–20 times larger than the 
project area to meet some VCS methodologies (VCS Association  2010 ). 

  IPCC Tier Selection . The inventory area may need to be reduced in order to meet 
higher IPCC Tier levels. For example, if a spatially explicit inventory (Approach 3) 
meeting IPCC Tier 3 guidelines is desired, expensive high-resolution satellite imag-
ery and intensive data collection may be required and resource constraints may lead 
to a smaller inventory area. Meeting a lower IPCC Tier requirement could allow for 
the use of freely available imagery and/or existing data that could enable monitor-
ing of a larger area. 

  Stratifi cation and Variability . Ideally, inventory data will be collected in such a way 
as to suffi ciently capture the spatial variability of key stratifi cation variables. 
Identifi cation of such variables a priori may reveal that it is impractical or fi nancially 
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unfeasible to develop a sampling strategy that can suffi ciently capture variation within 
the entire area and the extent of the monitoring area may need to be adjusted. 

  Policy Levers . It is important to consider which policy levers exist, at what scale 
they can be applied and which may be infl uenced by assessment results when deter-
mining monitoring boundaries. For example, if regulations affecting land-use are 
implemented solely along political boundaries, it may not make sense to draw 
project- monitoring extents around watershed boundaries that may encompass mul-
tiple political units with differing regulations or policy options.   

3.2.2       Data Acquisition 

 Data to estimate areal LULC extents can be acquired through three general sources: 
existing datasets developed for other purposes, collection of new data through sam-
pling and complete LULC inventories using remote sensing data (Table  3.1 ). 

    Existing Data 

  Existing datasets   can come from national or international sources or from other 
projects or research activities. Data may be available in a variety of formats and 
collection dates, and at varying spatial and temporal scales and extents. Time should 
be taken to identify existing data sources in order to determine what data remain to 
be collected, at what temporal and spatial scales and to what degree project resources 
can accommodate these needs. Useful datasets can include historical LULC maps, 
climate data, biophysical data (e.g., soil or hydrological maps), census or household 
surveys and political boundaries or administrative units.  

     Ground-Based Field Sampling Methods   

 Ground-based methods are recommended when existing datasets are incomplete, 
out of date, or inaccurate and complete spatial coverage with remote sensing tech-
niques is unfeasible or would not be accurate on its own (IPCC  2003 , Sect. 2.4.2). 
Ground-based sampling can be expensive and time consuming and is generally 
more appropriate for smaller project areas or when used in a sampling framework 
over larger areas. Field sampling to help determine LULC areal extents can result in 
two types of geographic data: biophysical data and socioeconomic data. Biophysical 
data generally require objective physical measurement of various land attributes 
(e.g., parcel size, vegetative composition). Ideally these measurements are georef-
erenced using GPS in order to integrate them with remote sensing data and enable 
accurate follow-up measurements. Socioeconomic data can be collected using a 
variety of methods including interviews, surveys, census, questionnaires, and 
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participatory rural appraisals (e.g., semistructured interviews, transect walks, and 
other fl exible approaches involving local communities; see Ravindranath and 
Ostwald  2008  for more information). Socioeconomic data may or may not be geo-
referenced, depending on the application. 

 Both biophysical and socioeconomic data acquired using the methods mentioned 
above can give a reasonable estimate of the proportions of LULC categories within 
the inventory area provided sample locations are selected using statistically rigor-
ous methods to maintain consistency and minimize bias. These proportions can then 
be multiplied by the total land area to generate activity data. Sample locations can 
be chosen using random or targeted (non-random) methods (Box  3.1 ). Random 
methods allow for quantifi cation of uncertainties and are therefore generally 
 preferred, but targeted methods may be useful for measuring carbon stocks related 
to a specifi c event (e.g., a fi re) or calibration of modelling for a specifi c carbon pool 
(e.g., effects of decomposition on soil carbon) (Maniatis and Mollicone  2010 ).  

  Box 3.1 Random and Targeted Sampling Methods for Generating 
LULC Activity Data 

  Random Sampling  
   Random sampling   is generally done using systematic or stratifi ed sampling 
methods. Systematic sampling spatially distributes sampling locations in a ran-
dom but orderly way, for example using a grid. Stratifi ed sampling selects sam-
ple sites based on any number of environmental, geographic, or socioeconomic 
variables to achieve sampling rates in proportion to the distribution of the chosen 
variables across the inventory extent. Stratifi ed sampling methods (e.g., optimum 
allocation) can improve the accuracy and reduce costs of monitoring efforts 
(Maniatis and Mollicone  2010 ) and tools exist to determine the number of sam-
ple plots needed (UNFCCC/CCNUCC  2009 ). Ideally sample sites for determi-
nation of LULC can be co-located with sites for measuring carbon stocks and 
GHG emissions, although this may not always be practical or feasible.  

  Targeted Sampling  
  Targeted sampling   refers to the non-random selection of specifi c sample 
regions based on determined criteria. A common example of targeted sampling 
is the use of low-cost or free-imagery to identify “hotspots” of active LULC 
change such as deforestation (Achard et al.  2002 ; De Sy et al.  2012 ). These 
hotspots, or a randomly selected subset within, can then be selected as sample 
units for more in-depth monitoring using higher-resolution imagery and/or 
comprehensive fi eldwork. These data can then be used to train LULC classifi -
cation algorithms and assess the accuracy of results obtained using medium or 
coarse resolution imagery. Regardless of the method chosen, sampling should 
be statistically sound and allow for the quantifi cation of uncertainty . 
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     Remote Sensing Data   

  Complete wall-to-wall LULC inventories are generally carried out using a combi-
nation of remote sensing data and fi eld-based sampling. Remotely sensed data come 
from aerial photography, satellite sensors, and airborne or satellite-based RADAR 
or LiDAR. Optical sensors are the most commonly used in LULC classifi cation as 
they provide spectral information in the visible and infrared bands at a range of 
resolutions and costs (Table  3.2 ). While fi ne (<5 m) or medium (10–60 m) resolu-
tion imagery are preferable for accurately monitoring LULC in landscapes domi-
nated by smallholder agriculture, cost of acquisition and/or processing may be 
prohibitive for projects covering large areas. However, methods exist for nesting 
high-resolution sampling within coarser resolution wall-to-wall coverage to reduce 
uncertainty of LULC change analysis across large areas and lower costs (e.g., Achard 
et al.  2002 ; Jain et al.  2013 ).

   Image processing techniques can be applied to the remotely sensed data to 
enhance particular land-cover types, or enable more accurate stratifi cation and clas-
sifi cation, such as the calculation of the  Normalized Difference Vegetation Index 
(NDVI), developing textural variables (e.g., Castillo-Gonzalez 2009)   or principle 
component analysis (PCA). Imagery can also be classifi ed into land-cover classes 
enabling easier manipulation in a GIS. Spatial analysis of remotely sensed data 
combined with environmental and/or socioeconomic variables can also create addi-
tional datasets to further enhance classifi cation and stratifi cation. Designating eco-
logical or anthropogenic biomes (Ellis and Ramankutty  2008 ), calculating market 
accessibility (Chomitz and Gray  1996 ; Southworth et al.  2004 ) and identifying 
landscape mosaics (Messerli et al.  2009 ) are examples of such user-generated datasets 
to improve analysis of LULC change and explore drivers of change in smallholder 
landscapes. 

       Spatial Considerations   

  The spatial scale(s) at which data collection and analysis will take place is a key factor 
to consider when developing a monitoring and analysis program. Changing the scale 
at which analysis takes place can result in signifi cantly different results, even when 
using the same dataset. The “optimal” scale of measurement and prediction is proj-
ect-specifi c and may even vary for different steps of analysis (Lesschen et al.  2005 ). 
Complementary analysis at multiple scales may further improve accuracy (Messerli 
et al.  2009 ). A number of factors related to spatial scale should be considered to 
maintain transparency, and improve accuracy and effi ciency of analysis. 

 The fi nest-scale unit of data is called a minimum information  unit   or minimum 
mapping  unit   (MIU or MMU). This is often the size of a small contiguous group of 
pixels for remote sensing data or the household for census data, although data may 
only be available aggregated to an administrative unit such as a village or municipal-
ity. To qualify for carbon credits, for example under the REDD+ mechanism, MMUs 
of <1–6 ha are generally required (De Sy et al.  2012 ; GOFC-GOLD  2014 ). In land-
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scapes dominated by smallholder agriculture, individual LULC parcels are often 
0.5 ha or smaller. When using remote sensing data, it is preferable to have MIUs 
(e.g., pixels) that are signifi cantly smaller than the average farm size to avoid mixed 
pixels that encompass multiple LULC categories. However methods of remote sens-
ing analysis, such as spectral unmixing (Quintano et al.  2012 ) and hierarchical train-
ing with very high-resolution imagery (e.g., Jain et al.  2013 ) have been developed to 
attempt to deal with the issue of mixed pixels in coarser resolution imagery. 

 It is important to consider the scale of all available data to avoid mismatches that 
could lead to data management problems or wasted resources. Depending on the 
analysis methods used, data may have to be resampled to the coarsest available 
dataset. For example, it may be unnecessary to acquire a 5 m digital elevation model 
for stratifi cation if it will be combined with 30 m Landsat data.   

     Temporal Considerations   

  Several temporal boundaries should be fi xed established during the development of 
a monitoring methodology.

    Historical reference period . If developing a baseline scenario from a historical ref-
erence period, this period must be specifi cally defi ned and appropriate for sce-
nario development.  

   Monitoring period:  The period for which changes in GHG emissions and reductions 
from LULC change are to be monitored.  

   Timing of monitoring:  The schedule for monitoring to take place. Care should be 
taken to acquire imagery and/or carry out fi eld sampling as close to the same 
time of year as possible for each monitoring period as interannual variability in 
vegetative cover and phenology may vary signifi cantly in some locations (Huang 
and Song  2012 ; Serneels et al.  2001 ). Changes in carbon stocks from LULC 
change, such as declines in soil organic carbon (SOC) or vegetative regrowth, 
may not be linear within a monitoring period or may level off to zero-change 
within the period, also requiring appropriately timed sampling or modelling.  

   Monitoring frequency:  The frequency of monitoring activities (e.g., imagery acquisi-
tion, fi eld-sampling, surveys). Management strategies within a LULC category, for 
example cropping intensity, can have signifi cant impacts on carbon stocks (e.g., 
Schmook  2010 ). More frequently, strategically timed data collection (i.e., sam-
pling and/or image acquisition) is often required to detect changes in management 
strategies within an LULC category (De Sy et al.  2012 ; Jain et al.  2013 ; Smith et al. 
 2012 ). In most cases, particularly when dealing with remote sensing, increasing the 
temporal resolution of data (i.e., more frequent acquisition) necessitates declining 
spatial coverage and resolution (due to either technological or cost-prohibitive fac-
tors) and this trade-off must be considered when choosing between data sources.  

   LULC change defi nitions . The time period after which a change in LULC is consid-
ered permanent must be determined. For example, shifting cultivation, common 
practice in smallholder agriculture, results in cycles of cultivation and fallow 
periods that vary year to year, yet can resemble managed or secondary forest- 
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cover  when observed over the long term (Houghton et al.  2012 ). These tempo-
rary changes in land-cover (e.g., from annual cropping to secondary forests) can 
be misinterpreted as afforestation or deforestation depending on the timing of 
sampling or image acquisition if they are not considered across their entire cycle 
with suffi ciently frequent measurements (DeFries et al.  2007 ). One approach to 
account for fl uctuating carbon stocks associated with shifting cultivation is to 
calculate time-averaged carbon stocks for a given land-use system (Bruun et al. 
 2009 ; Palm et al.  2005 ).  

   Other considerations . Many studies have found that land-use is often infl uenced by 
land features. For example, farmers may choose to cultivate areas with fertile, car-
bon-rich soils (e.g., Aumtong et al.  2009 ; Ellis and Ramankutty  2008 ; Jiao et al. 
 2010 ) or reduce fallow periods when the soil fertility is high (Roder et al.  1995 ) 
and leave forests intact only in areas with poor soils. This preferential selection can 
make it diffi cult to determine that land-use is in fact causing a change in soil carbon 
stocks, and not the other way around (soil carbon stocks infl uencing land-use). 
Repeated sampling may be required to observe carbon stock changes resulting 
directly from LULC conversion (Bruun et al.  2009 ). The effects of prior land-use 
on future carbon sequestration potential may also be signifi cant (see Eaton and 
Lawrence  2009 ; Hughes et al.  1999 ). While diffi cult to quantify, these delayed 
fl uxes can be included when considering LULC transitions (e.g., a forest converted 
from agriculture may not store the same amount of carbon as a forest converted 
from a pasture). Finally, complications can arise from temporal mismatching, for 
example if biophysical or social data are collected in a separate time period from 
satellite imagery. There may be benefi ts from matching the timing of data acquisi-
tion on various factors (Rindfuss et al.  2004 ).       

3.2.3      LULC Classifi cation and Change Detection 

    LULC  Category Defi nition   

  Regardless of the Approach used to generate activity data, LULC categories must be 
clearly and objectively established and LULC categories, subcategories, and strata 
should be mutually exclusive and totally exhaustive (Congalton  1991 ) with clear 
defi nitions of transitions from one class to another. (Note that sophisticated analysis 
methods using non-discrete, probabilistic or “fuzzy” classifi cation do exist (e.g., 
Foody  1996 ; Southworth et al.  2004 ), but are beyond the scope of this chapter). For 
example, forests are generally defi ned based on a threshold value of minimum area, 
height and tree crown cover and the Designated National Authority (DNA) for each 
country can aid in defi ning LULC category defi nitions (GOFC- GOLD  2014 ). 
Objective defi nitions are especially important in smallholder landscapes where shift-
ing cultivation and fallow rotations are common and transitions between LULC 
classes may not be straightforward. Furthermore, since smallholder landscapes often 
consist of small and heterogeneous land uses, it is possible that sampling points may 
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fall into more than one LULC category. Systematic, transparent, and objective meth-
ods are needed to determine to which LULC category a sampling point belongs 
(Maniatis and Mollicone  2010 ). 

 The  IPCC    Agriculture, Forestry, and Other Land-Use (AFOLU) Guidelines   
( 2006 ) defi ne the following six broad land-use categories:

•    Forest Land  
•   Cropland  
•   Grassland  
•   Wetlands  
•   Settlements  
•   Other Land    

 These top-level classes were designed to be broad enough to encompass all land 
areas in a country and allow for consistent and comparable reporting between coun-
tries. Monitoring activities can further divide these classes into conversion catego-
ries (i.e., Forest Land converted into Cropland, Wetlands converted into Settlements). 
For REDD+ GHG inventories and Tiers 2 and 3 reporting, it is likely that these 
top-level classes must be further divided into subcategories and/or stratifi ed to 
allow for disaggregation of carbon stocks and improved estimation accuracy. 
Subcategories refer to unique LULCs within a category (e.g., secondary forest, 
within Forest Land) that impact emissions and for which data are available. 
Identifi cation of subcategories can greatly reduce uncertainty of carbon stock esti-
mates. For example, Asner et al. ( 2010 ) found that secondary forests held on aver-
age 60–70 % less carbon than intact forests in the Peruvian Amazon, and other 
studies have found similarly large differences in carbon stocks between forest types 
(e.g., Eaton and Lawrence  2009 ; Saatchi et al.  2007 ), highlighting the importance of 
forest subclasses. Secondary forests, a signifi cant LULC class in smallholder land-
scapes, are estimated to make up more than half of tropical forested areas and can 
be an important source or sink of carbon (Eaton and Lawrence  2009 ; Houghton 
et al.  2012 ). Therefore, distinguishing between secondary forests, bush-fallows, and 
undisturbed forests, while often challenging, will likely result in more accurate car-
bon stock estimates. 

 Stratifi cation within LULC categories and subcategories can be based on any 
number of factors signifi cant to emission estimation such as climate, ecological 
zone, elevation, soil type, and census data (e.g., population, management prac-
tices) (see Stratifi cation, below). Final LULC categories and strata will depend on 
project location, climate and ecological factors, data availability, analysis capac-
ity, and other factors. Ideally, however, subcategories or strata can be aggregated 
to correspond with the six broad land-use categories listed above to maintain con-
sistency between country or project inventories. Designation of LULC classes 
and strata will also depend on the IPCC Approach chosen to represent land-use 
area data. To meet Approaches 2 and 3, data on conversion between LULC cate-
gories and strata must be available, potentially limiting the number of possible 
subcategories and strata .  
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    LULC Classifi cation, Mapping, and Tabulation 

  Non-spatially explicit methods   for collecting activity data (Approaches 1 and 2) 
result in tables of land area totals by LULC category for a given point in time. 
Depending on how data are collected, these results can be aggregated to political or 
geographic boundaries and incorporated into existing maps. The data themselves 
are not spatially explicit in their disaggregated form and therefore exact patterns of 
land-use cannot be interpreted within the spatial unit of aggregation (Table  3.1 ). 
The original data will generally come from LULC surveys, census data, existing 
maps or a combination of these. Therefore uncertainty associated with Approaches 
1 and 2 will depend in large part on the quality of the sampling methods used to 
collect the original data. Costs could range greatly depending on the size of the 
project area, availability of existing data, heterogeneity of the landscape, and acces-
sibility, but in general Approaches 1 and 2 can be low-cost options, especially for 
smaller projects. 

  Spatially explicit methods   for generating activity data (Approach 3) use a com-
bination of remote sensing and fi eld-based sampling to develop a wall-to-wall clas-
sifi ed LULC map with which LULC category areas can be totalled. Wall-to-wall 
maps provide the opportunity for interpolation between data points using GIS soft-
ware and the development of spatially explicit polygons and/or individual pixels 
assigned to various LULC categories. In this manner activity data can be effi ciently 
calculated, overlaid with ancillary data for stratifi cation, and integrated with emis-
sion factors to quantify and analyze GHG emissions/reductions, their spatial vari-
ability, and drivers. Many methods exist to classify LULC, but they can be grouped 
into three main categories: visual interpretation, unsupervised classifi cation, and 
supervised classifi cation (Box  3.2 ). Additionally, a number of pre- and/or post- 
processing steps may also be required to ensure accurate results. Choice of classifi -
cation methods and image processing will depend on available resources, technical 
expertise, imagery, location, and available software. Greater detail on specifi c 
methodologies is presented on the associated website. Whichever methods are cho-
sen for preprocessing, classifi cation, and post-processing, they should be transpar-
ent, repeatable by different analysts, and results should be assessed for accuracy 
(GOFC-GOLD  2014 ). 

       Stratifi cation   

  Once LULC classes have been identifi ed and imagery classifi ed, stratifi cation by 
one or more variables may be desirable to improve estimation of carbon stocks, 
GHG emissions and reductions, and/or baseline development. The primary goal of 
stratifi cation is to minimize the variability of carbon stock estimates within LULC 
categories (Maniatis and Mollicone  2010 ). The most basic form of carbon stock 
stratifi cation is the development of subcategories (e.g., secondary forest versus 
mature forest; tree crops versus annual crops). Additional datasets and/or more 
intensive sampling may be required to identify subcategories, which may increase costs, 
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  Box 3.2 General LULC Classifi cation Methods Using Remote 
Sensing Data 

   Visual interpretation    
 The simplest method of LULC classifi cation is visual interpretation. In this 
method, a person familiar with the landscape and the appearance of LULC 
classes in remotely sensed imagery, manually interprets and classifi es poly-
gons around different land-covers. This method can be quite accurate but may 
not be precisely repeatable and can result in high uncertainty if comparisons 
are made between maps classifi ed by different people. However systematic 
approaches to visual interpretation can increase accuracy and repeatability 
(e.g., Achard et al.  2002 ; Ellis  2004 ; Ellis et al.  2000 ). 

   Unsupervised classifi cation    
 This method is fully automated and classifi cation occurs without direct user 
intervention, although parameters such as the number of classes to be identi-
fi ed can be set by the user. Unsupervised classifi cation algorithms cluster pix-
els into spectrally similar classes and very small spectral differences between 
classes can be identifi ed (Vinciková et al.  2010 ). This method can be useful for 
exploring the number and distinguishability of potentially identifi able classes. 

  Supervised classifi cation  
   Supervised classifi cation   relies on the training data that is used to calibrate 
automated or semiautomated classifi cation algorithms. Training data may be 
obtained through fi eld sampling, separate higher-resolution remote sensing 
imagery or from within the original image. Ideally training points will be 
chosen in a statistically rigorous way (e.g., random, stratifi ed, systematic) and 
spatial and temporal factors should be considered (Sect.  3.2.2 , Spatial 
Considerations and Temporal Considerations).

•     Pixel-based supervised classifi cation . Pixel-based supervised classifi cation 
is one of the most commonly used classifi cation methods. It uses spectral 
information for placing individual pixels into classes. Algorithms use train-
ing data and predetermined classes identifi ed by the user to classify pixels. 
Statistical methods such as signature separability functions can be used to 
evaluate the quality of training of data and improve classifi cation accuracy 
(Moreno and De Larriva  2012 ). One drawback to pixel-based classifi cation, 
be it supervised or unsupervised, in smallholder agriculture landscapes is 
the problem of mixed pixels where individual pixels encompass multiple 
LULCs. Spectral mixture analysis (SMA), also called spectral unmixing, 
can overcome this problem by assigning individual pixels an estimated pro-
portional value of multiple LULC classes (Quintano et al.  2012 ). SMA can 
improve classifi cation accuracy in heterogeneous landscapes but requires 
signifi cant technical expertise and expensive GIS software.  

•    Object-based classifi cation . The primary goal of object-based classifi cation 
is to identify MIUs on which to base classifi cation criteria (Castillejo- 
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and transparent objective methods should still be used to defi ne subcategories. 
However, stratifi cation can reduce overall costs if monitoring activities can be 
targeted toward subcategories in which LULC transitions and carbon stock changes 
are expected (GOFC-GOLD  2014 ). Further stratifi cation can be done using bio-
physical (e.g., slope, rainfall, soil type) and socioeconomic (e.g., population) datasets. 
Combining datasets requires either spatially explicit data (Approach 3) or datasets 
following Approaches 1 or 2 that have been aggregated to spatially defi ned units 
such as administrative boundaries. (See Lesschen et al. ( 2005 ) for a good overview 
on combining datasets for analysis of LULC change in farming systems.) 

 Stratifi cation should only be carried out to the degree that chosen strata improve 
carbon stock estimates and reduce uncertainty. Statistical methods such as multi-
variate and sensitivity analyses exist to assess the quality of potential strata. Project 
objectives, timeframe, and the temporal and spatial resolution of available data will 
also impact the choice of LULC subcategories and strata .  

    LULC Change Detection 

  When using  activity data   generated with Approaches 1 and 2, change detection can 
be as simple as carrying out basic arithmetic to calculate the change in total land 
area of each LULC class at two or more points in time. Approach 2 will include 
results on the specifi c transitions observed (e.g., from forest to cropland versus from 
forest to pasture) and results are generally reported using a land-use conversion 
matrix (IPCC  2006 ; Ravindranath and Ostwald  2008 ). 

 Spatially explicit methods (Approach 3)    to detect changes in LULC can be 
 separated into three general categories: post-classifi cation comparison, image 

González et al.  2009 ). In pixel-based classifi cation, the pixel is the MIU 
whereas object-based methods quantitatively group pixels that are spec-
trally similar and spatially adjacent to create new MIUs representing patches 
or parcels of homogenous land-covers. Classifi cation is then carried out on 
individual objects using a combination of spatial and spectral informa-
tion. Object-based techniques combined with high-resolution imagery 
have not only been shown to outperform pixel-based methods in highly 
heterogeneous landscapes (e.g., Moreno and De Larriva  2012 ; Perea et al. 
 2009 ) but also require extensive technical expertise, time, and specialized 
GIS software.  

•    Other supervised classifi cation techniques —Additional, relatively complex 
techniques such as regression/decision trees, neural networks, hierarchical 
temporal memory (HTM) networks (Moreno and De Larriva  2012 ), and 
support vector machines (Huang and Song  2012 ) have also shown success 
in improving classifi cation accuracy in heterogeneous landscapes.     

Box 3.2 (continued)
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comparison approach, and bitemporal classifi cation approach. Post-classifi cation 
comparison is the most straightforward approach and consists of fi rst conducting 
separate LULC classifi cations on two or more images and comparing the results to 
detect change. Post-classifi cation change detection is popular due to the fact that 
hard classifi cation for single-date imagery is often required for other purposes or 
preexisting classifi ed images are being used for one or more dates (van Oort  2007 ). 
One major drawback to this approach is that each image will contain uncertainty 
stemming from misclassifi cation, which could result in signifi cant errors in the 
change map from  misidentifi cation of LULC change. The image comparison 
approach attempts to reduce these errors by comparing the two unclassifi ed images 
and identifying pixel-based change thresholds through methods such as differenc-
ing, ratioing, regression, change vector analysis, and principal component analysis 
(Huang and Song  2012 ). Bitemporal classifi cation goes a step further by analyzing 
multiple images simultaneously and applying one of a variety of algorithms to pro-
duce a fi nal map with change classes in a one-step process (Huang and Song  2012 ). 
The two latter approaches can be more adept at detecting specifi c changes of inter-
est and more subtle changes (van Oort  2007 ) and may reduce uncertainty in cases 
where classifi cation accuracy is low.     

3.3      Developing a Baseline 

 Activity data are monitored at two or more points in time to assess LULC change. 
However, this change must be compared against a “business as usual” scenario to 
determine additionality (i.e., to defi ne what would have occurred in the absence of 
project interventions). Only by comparing observed changes against a well- developed 
and justifi ed baseline can we be sure that project activities resulted in changes that 
would not have occurred otherwise. Two general methods exist to develop a com-
parative baseline of LULC change: the development of a baseline scenario or the 
monitoring of a reference region. 

3.3.1     Baseline Scenarios 

  A  baseline scenario   predicts the LULC changes that would occur within the 
inventory area in the absence of interventions by creating a “business as usual” 
scenario from a variety of input data (Table  3.3 ). This scenario can be developed on 
a project- by- project basis using conditions and information particular to the project 
(project- specifi c approach) or for a specifi c geographic area, which may extend 
beyond the project area boundaries (regional baseline approach, also called the per-
formance standard approach). Either approach can be based on historical data and/or 
logical arguments about economic opportunities that could infl uence future LULC 
change (Sathaye and Andrasko  2007 ) and examples of both approaches are given in 
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Table  3.4 . The project-specifi c approach is often based on logical arguments where 
the baseline scenario is identifi ed as the scenario facing the fewest barriers 
(Greenhalgh et al.  2006 ). This approach requires the development of multiple sce-
narios for the project area and requires economic-related data to evaluate which is 
most likely to occur. The regional baseline approach uses time-based estimates to 
project future carbon stock changes. This approach may require more GHG-related 
and spatially explicit data to enable quantitative analysis of trends in LULC change 
and GHG emissions/removals (Greenhalgh et al.  2006 ). The regional approach can 
result in more credible and transparent baselines and reduce costs when multiple 
projects are proposed within the same region (Brown et al.  2007 ; Sathaye and 
Andrasko  2007 ). An example of a potentially very useful dataset for identifying 
historical trends of forest-related disturbances is the high-resolution global forest 
change map recently published by Hansen et al. ( 2013 ).

    Modelling future LULC changes based on historical and current data can be done 
using solely historical trends in percent change in land area or by incorporating driv-
ers of LULC change into predictive models. Projection of historical LULC change 
trends requires reliable activity data for at least two points in time, preferably at the 
beginning and end of the historical period. Drivers used in modelled baselines can be 
simple metrics (e.g., population growth) to meet Tiers 1 and 2, or a more complex 
combination of spatially explicit biophysical and socioeconomic factors to meet 
Tiers 2 and 3. Drivers can greatly improve baseline development by capturing peri-
odic fl uctuations or variations across a landscape that may not be captured using 
trend analysis (Sathaye and Andrasko  2007 ). For example historical deforestation 

   Table 3.3    Summary of activities for developing a baseline at various uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty  Key references 

 Baseline 
scenario 
development 

 Logical 
arguments or 
simple trend 
analysis based 
on limited 
historical data 

 Projection of 
historical LULC 
trends using 
multitemporal 
historical data 
and/or simple 
predictor 
variables; or 
monitoring of a 
similar reference 
region 

 Modelled baseline 
developed using 
empirically derived 
predictor variables 
from multitemporal 
historical datasets; or 

 Brown et al. 
( 2007 ); 
Greenhalgh 
et al. ( 2006 ); 
Sathaye and 
Andrasko 
( 2007 )  Monitoring of a highly 

similar reference 
region with clearly 
defi ned comparative 
thresholds 

 Baseline 
justifi cation 

 Logical 
arguments and/
or qualitative 
investment, 
barrier or 
common 
practice 
analysis 

 Investment, barrier 
and/or common 
practice analysis 
using limited 
quantitative 
analysis 

 Development of 
alternative baseline 
scenarios with 
investment and/or 
barrier analysis and 
common practice 
analysis using 
quantitative 
approaches 

 Greenhalgh 
et al. ( 2006 ); 
VCS 
Association 
( 2012 ) 
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trends may not continue into the future if certain thresholds have been reached or 
land-use determinants such as road networks have changed (Chomitz and Gray 
 1996 ). Incorporating such factors into models can improve trend prediction and 
many different models exist to analyze the infl uence of drivers and set baselines 
(e.g., Brown et al.  2007 ). Reporting should describe the model and drivers in detail 
and the chosen model should be transparent, include empirical calibration and vali-
dation processes and generate uncertainty estimates (Greenhalgh et al.  2006 ). 

 To qualify for carbon crediting under the VCS, Clean Development Mechanism 
(CDM), REDD+ or other mechanisms, the baseline must generally be justifi ed 
using investment, barrier and/or common practice analysis (Greenhalgh et al. 
 2006 ;Tomich et al.  2001 ; VCS Association  2012 ). In other words, barriers to the 
LULC changes sought by project activities or policies must be identifi ed to show 
that insuffi cient incentives exist to achieve the desired LULC changes without inter-
vention. Ideally multiple scenarios will be developed and evaluated to determine 
which is the most credible and conservative baseline choice. Several temporal con-
siderations also exist related to both the historical period used to generate a baseline 
scenario and the period for which the baseline is projected forward. Historical data 
should be as relevant as possible to the projected period and major events (e.g., hur-
ricanes, fi res) and policy changes (e.g., protected area designations) should be con-
sidered when acquiring historical data. A narrative approach exploring the story 
behind historical LULC dynamics can further reveal relationships between observed 
changes and the forces driving them (Lambin et al.  2003 ). The validity period for 
the baseline (i.e., for how many years the baseline is considered valid and accurate) 
should also be taken into account. Experience from other projects suggests that an 
adjustable baseline approach is preferable. A common approach is to set a fi xed 
baseline for the fi rst 10 years, at which point it is evaluated and adjusted as needed 
(Brown et al.  2007 ; Sathaye and Andrasko  2007 ; VCS Association  2014 ).   

3.3.2       Reference Regions   

  An alternative to developing a baseline scenario for the project area is to monitor a 
separate reference region, a common approach among  Voluntary Carbon Standard 
(VCS) methodologies   (e.g., VCS Association  2010  and others). The reference region 
should be suffi ciently similar to the project area to conclude that the trajectory of LULC 
change observed in the reference region would also have occurred within the project 
area in the absence of project activities. While exact requirements for identifi cation of 
a reference region vary, in general the reference region must be signifi cantly larger than 
and demonstrably similar to the inventory area. In order to demonstrate similarity, key 
variables must be compared which may include landscape features (e.g., slope, eleva-
tion, LULC distribution), ecological variables (e.g., rainfall, temperature, soil type) and 
socioeconomic conditions (e.g., population, land tenure status, policies, and regula-
tions) (see VCS Association  2010 ). Transparent comparison procedures must be devel-
oped to set comparative thresholds for the reference region (e.g., average slope of the 
reference region shall be within 10 % of the average slope of the inventory area). 
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 Monitoring a reference region may be a cost-effective option for small projects that 
can easily identify an area similar to the project area. However larger projects, or proj-
ects working in a unique biophysical or sociopolitical environment, may fi nd it diffi cult 
to locate an appropriate reference region, or may fi nd it cost-prohibitive to monitor one.    

3.4     Calculating Carbon Stock Changes 

 In order to estimate GHG emissions and removals, carbon stock densities must be 
quantifi ed for each LULC category subclass and/or stratum. Carbon stock densities 
may come from default values, national datasets, scientifi c studies or fi eld sampling 
and are generally given as tons of carbon per hectare (Mg C ha −1 ) for individual or 
combined carbon  pools   (Table  3.5 ).

3.4.1         Key Carbon Pools   

 The IPCC  Guideline  s ( 2006 ) defi ne fi ve carbon pools: living aboveground biomass, 
living belowground biomass, deadwood, litter and soil organic matter (SOM). In the 
case that data are not available for all carbon pools, key pools can be identifi ed based 
on their relative expected contribution to total carbon stock changes caused by possi-
ble LULC transitions. Thresholds are developed to delimit the minimum contribution 
of total emissions from a pool to be defi ned as “key.” For example, a threshold could 
be created stating that only pools representing more than 10 % of total carbon stocks 
are considered key. Therefore it is possible that some pools will be key for certain 
LULC classes but not for others. Identifying key pools can help target monitoring and 
modelling efforts to minimize uncertainty and is required under IPCC reporting.  

3.4.2     Initial Carbon Stock  Estimates   

 Calculation of initial carbon stocks can be done in several ways ranging from the use 
of simple arithmetic to running complex models. The simplest method is to assign a 
single carbon stock density value (or range of values) to each LULC category and 
multiply this value by the total area of each category. This method can be used with 
activity data associated with any of the three Approaches. It is relatively straightfor-
ward and potentially low-cost, but may introduce high levels of uncertainty as it 
assumes that there is no variability of carbon stocks within LULC categories. 

 Uncertainty can be reduced by taking into account additional drivers of carbon 
stocks beyond just LULC categories. This can be done through stratifi cation (Sect. 
 3.2.3 ) and/or modelling. Modelling approaches require data on carbon stocks and 
rates of change, which can be obtained from default emission factors, scientifi c 
research, or fi eld measurements. Additional biophysical (e.g., slope, rainfall, soil 
type) and socioeconomic (e.g., population) datasets may also be needed. A variety 
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of models such as PROCOMAP, CO 2 FIX, CENTURY, ROTH, and others exist with 
a range of complexity and data requirements. (See Ravindranath and Ostwald  2008  
for a good comparison of several models.)  

3.4.3     Monitoring Carbon Stock Changes 

 Carbon stock changes are estimated using one of two general methods: one process- 
based and the other stock-based. The process-based method estimates the net addi-
tions to, or removals from, each carbon pool based on processes and activities that 
result in carbon stock changes, such as tree harvesting, fi res, etc. The stock-based 
method estimates emissions and removals by measuring carbon stocks in key pools 
at two or more points in time. 

   Table 3.5    Summary of activities for calculating carbon stock changes from LULC change at 
various uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty  Key references 

 Defi ne key 
carbon 
pools 

 Key pools 
identifi ed using 
international or 
default data; 

 Key pools 
identifi ed using 
region- specifi c 
or fi eld-based 
data 

 Key pools identifi ed for 
each LULC class using 
fi eld sampling, or 

 GOFC-GOLD 
( 2014 ); IPCC 
( 2006 , Volume 
4, Chap. 2) 

 Same key pools 
applied to all 
LULC classes 

 Key pools 
defi ned 
separately for at 
least broad 
LULC categories 

 Data available for all 
carbon pools 

 Initial 
carbon 
stock 
estimates 

 Single carbon 
stock density 
applied to each 
LULC class 
based on global 
or regional 
default data 

 Carbon stocks 
stratifi ed by 
subclasses or 
additional strata 
and derived from 
country- specifi c 
data and/or fi eld 
sampling for key 
carbon pools 

 Spatially explicit 
stratifi cation and 
modelling of carbon 
stocks using empirically 
derived drivers of 
observed carbon stock 
variability; or 

 Goetz et al. 
( 2009 ); 
GOFC-GOLD 
( 2014 ); 
Greenhalgh 
et al. ( 2006 ); 
IPCC ( 2006 ) 

 Direct carbon stock 
monitoring approaches 
(e.g., using LiDAR, 
RADAR, optical sensors) 

 Monitoring 
carbon 
stock 
changes 

 Process-based 
method using 
default 
emissions 
factors assigned 
to LULC classes 
and change 
processes (e.g., 
deforestation) 

 Process-based 
method using 
emission factors 
derived from 
country- or 
region- specifi c 
data 

 Process-based method 
using emission factors 
derived from fi eld 
sampling within the 
project area or research 
activities in highly 
similar areas 

 Greenhalgh 
et al. ( 2006 ); 
Houghton 
et al. ( 2012 ); 
IPCC ( 2006 , 
Volume 4, 
Chap. 2) 

 Stock-based methods 
using multitemporal 
carbon stock inventories 
for key pools 

S.P. Kearney and S.M. Smukler



59

    Process-Based Method 

   The  process-based method      (sometimes called the gain-loss, IPCC default or emis-
sion factor method) estimates gains or losses of carbon in each pool by simulating 
changes resulting from disturbance or recovery (Houghton et al.  2012 ). Changes in 
LULC drive process-based models, and carbon stocks are re-allocated based on 
observed or modelled LULC change. Gains are a result of carbon accumulation from 
the atmosphere (e.g., in tree biomass) or transfers from another pool (e.g., from bio-
mass to SOC via decomposition). Losses are attributed to transfers to another pool or 
emissions to the atmosphere as CO 2  or other GHGs (IPCC  2006 , Volume 4, Chap. 2). 
Additional emission factors can be developed for emitting activities that do not nec-
essarily affect the fi ve carbon pools identifi ed by the IPCC. These include, for 
example, direct emissions from livestock, farm equipment or the production of non-
food products. Models and emission factors used in process- based methods can vary 
in complexity and potentially meet any Tier requirements. IPCC default factors can 
be used to achieve Tier 1 reporting requirements whereas country-specifi c or locally 
derived research data combined with more complex modelling approaches are 
required to meet Tier 2 and 3 requirements.    

    Stock-Based Method 

 The  stock-based method      (also called the bookkeeping, stock-difference, or stock- 
change method) combines ground-based and/or remotely sensed data of measured 
carbon stocks with data on changes in the total land area of each LULC class between 
two or more points in time. For stock-based methods, carbon stock changes are mea-
sured independently of LULC change and are then multiplied by the total area of each 
LULC class and stratum. Process-based methods model carbon stock changes based 
on LULC changes. Depending on the spatial resolution of data, conversions might be 
required to arrive at a carbon density (Mg C ha −1 ) that is then combined with activity 
data to estimate total emissions/removals. Typically, country- specifi c information is 
required for use with the stock-based method and resource requirements for data 
collection may be greater than process-based methods unless appropriate datasets 
already exist. Stock-based methods often meet at least Tier 2 requirements, provided 
activity data were generated according to Approach 2 or 3.    

3.5     Assessing Accuracy and Calculating Uncertainty 

 In order to qualify for carbon crediting under mechanisms such as VCS, CDM, and 
REDD+, fi nal reporting of GHG emissions/removals associated with LULC change 
must include uncertainty estimates (Maniatis and Mollicone  2010 ).  Uncertainty   
should be reported as the range within which the mean value lies for a given prob-
ability (e.g., a 95 % confi dence interval) or the percent uncertainty of the mean 
value, each of which can be calculated from the other (IPCC  2003 ). Errors will be 
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introduced at every level of data collection. Analysis and assessment of accuracy 
and uncertainty should be carried out for each step. Not only is this important for 
reporting purposes, it can provide valuable information to project managers to 
determine which steps contain the greatest sources of uncertainty, thereby encour-
aging cost-effective monitoring (e.g., Smits et al.  1999 ). 

 In this chapter we focus on estimating uncertainty associated with the collection 
of activity data, detection of LULC changes, and linking of emission factors and/or 
carbon stocks. Methods for assessing uncertainty related to the production of emission 
factors and measurement of carbon stocks (e.g., calculating soil carbon in a forest) 
are discussed elsewhere. 

3.5.1     LULC  Classifi cation Accuracy Assessment   

  When remote sensing data are used to develop wall-to-wall LULC maps, two types of 
error exist: errors of inclusion (commission errors) and errors of exclusion (omission 
errors). Accuracy should be assessed using a statistically valid method, the most com-
mon method being statistical sampling of independent higher-quality validation sam-
ple units (e.g., pixels, polygons, sites) for comparison against classifi ed sample units 
(Congalton  1991 ) (Table  3.6 ). These validation samples can be taken from fi eld obser-
vations, additional higher-resolution remote sensing imagery, or can be visually iden-
tifi ed from within the original image provided they are independent from those used 
during training. As with the selection of training data, validation sampling should be 
done in a statistically sound and transparent manner. Stratifi ed or proportional sam-
pling techniques may be desirable to improve accuracy and reduce costs. When using 
fi eld-based sampling to analyze current imagery, validation data should be collected 
as close to the time of image acquisition as possible, ideally at the same time as 
training data. Including farmers or other community members in the data collection 
process can be an effective way to estimate past LULC for classifi cation and valida-
tion of historical imagery, while at the same time empowering stakeholders and 
addressing conservation issues (e.g., Sydenstricker-Neto et al.  2004 ).

   The accuracy of classifi ed sample units compared against “real-world” validation 
sample units can be presented in an error matrix, also called a confusion matrix. This 
helps visualize errors, identify relationships between errors and LULC categories, and 
calculate indices of accuracy and variation (Congalton  1991 ). Classifi cation accuracy 
refers to the percentage of sample units correctly classifi ed and can be calculated as 
commission and omission errors for each LULC class as well as an overall accuracy 
for all classes (Table  3.7 ). These classifi cation accuracies can then be used as an 
uncertainty estimate to discount carbon credits associated with LULC change. For 
example, to maintain conservativeness of carbon credit estimates the VCS Association 
VM0006 ( 2010 ) uses the smallest accuracy of all maps as a discount factor for carbon 
credits. In the hypothetical example from Table  3.7 , this would result in carbon credits 
being discounted by 25 % (multiplied by a discount factor of 0.75). Representing 
accuracy using an error matrix also provides an opportunity to assess which LULC 
categories are most often confused. For example, cropland in smallholder landscapes 
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   Table 3.6    Summary of activities for assessing accuracy and calculating uncertainty at various 
uncertainty levels   

 Activity 
 Higher 
uncertainty 

 Mid-range 
uncertainty  Lower uncertainty  Key references 

 LULC area 
estimates 
and change 
detection 

 Assessment of 
data collection 
procedures to 
ensure data 
quality, but 
without the 
use of 
methods to 
quantify 
uncertainty 

 Assessment of data 
quality through 
systematic analysis 
of data collection 
procedures; or error 
matrix with Kappa 
coeffi cient based on 
validation points 
from limited fi eld 
ground-truthing or 
marginally 
higher-quality 
imagery 

 Confusion matrix 
with Kappa 
coeffi cient based 
on validation 
points from 
ground-truthing 
in the fi eld or 
higher-quality 
imagery 

 Congalton ( 1991 ); 
IPCC ( 2006 , 
Volume 4, Chap. 3) 

 Calculation of 
confi dence 
intervals for 
LULC category 
areas and changes 
in area 

 Carbon stock 
estimates 

 Varies by carbon pool; See Chaps.   6     and   7     for more information 

 Combining 
uncertainty 
estimates 

 Simple error 
propagation 

 Error propagation 
using more complex 
equations and 
controlling for 
correlation of input 
data 

 Monte Carlo 
simulations or 
other 
bootstrapping 
techniques 

 GOFC-GOLD 
( 2014 ); IPCC 
( 2003 ); 
Ravindranath and 
Ostwald ( 2008 ); 
Saatchi et al. ( 2007 ) 

    Table 3.7    Hypothetical error matrix showing the number of pixels mapped and validated (ground- 
truthed) by LULC class. Values in bold highlight the number of correctly mapped pixels and the 
row and column totals, which are used to calculate producer’s and user’s accuracy   

 Mapped 
classes 

 Ground truth classes 

 Forest  Cropland  Grassland  Wetland  Settlements  Other land  Total 

 Forest   900   50  50  0  0  0   1000  
 Cropland  50   750   150  30  20  0   1000  
 Grassland  30  60   810   70  20  10   1000  
 Wetland  30  30  30   390   0  20   500  
 Settlements  0  20  20  10   420   30   500  
 Other land  0  20  0  0  30   450    500  
 Total   1010    930    1060    500    490    510    4500  

 Producer’s accuracy 
(omission error) 

 User’s accuracy 
(commission error) 

 Forest  900/1010  89 %  900/1000  90 % 
 Cropland  750/930  81 %  750/1000  75 %  Overall accuracy 
 Grassland  810/1060  76 %  810/1000  81 %  3720/4500  83 % 
 Wetland  390/500  78 %  390/500  78 % 
 Settlements  420/490  86 %  420/500  84 % 
 Other land  450/510  88 %  450/500  90 % 
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is often misclassifi ed due to small farm sizes and its resemblance to bare soil (due to 
minimal refl ectance from young crops) or secondary forests (due to intercropping 
with tree species commonly found in secondary forests) (e.g., Sydenstricker-Neto 
et al.  2004 ). Other accuracy indicators include the kappa coeffi cient or KHAT statistic, 
root mean squared error (RMSE), adjusted  R  2 , Spearman’s rank coeffi cient and others 
(Congalton  1991 ; Jain et al.  2013 ; Lesschen et al.  2005 ; Smits et al.  1999 ). 

3.5.2        LULC Change Detection Accuracy Assessment 

  The accuracy of LULC  change detection   can be assessed using methods similar to those 
used to validate single scene LULC classifi cation, but additional considerations exist. 
When making post-classifi cation comparisons using two independently classifi ed 
images, the accuracy of each individual classifi cation should be assessed in addition to 
the accuracy of the change image. It is usually easier to identify errors of commission in 
change products because often only a small proportion of the land area will have expe-
rienced change, and often within a limited geographic area (GOFC-GOLD  2014 ). 
Unique sampling methodologies may therefore prove more cost-effective to validate the 
relatively rare event of changes in LULC within an image (Lowell  2001 ). A transition 
error matrix can be used to report the accuracy with which transitions between LULC 
categories are detected. This allows for assessment of uncertainty for each transition 
(e.g., forest to cropland, forest to grassland) and for partitioning of uncertainty attribut-
able to the change detection process versus classifi cation (van Oort  2007 ).   

3.5.3       Uncertainty   Associated with Estimating Carbon Stocks 

 Uncertainty estimates should be developed for key carbon pools within each LULC 
category. Uncertainty of carbon stocks using the stock-based method will be related 
to sampling. The process-based method will contain uncertainty estimates derived 
from scientifi c literature, model accuracy or other sources. Factors such as the scale 
of aggregation, stratifi cation variables, and the spatial or temporal considerations 
discussed above can all infl uence the uncertainty associated with integrating carbon 
stocks and activity data.  

3.5.4     Combining Uncertainty Values and Reporting Total 
Uncertainty 

 Combining uncertainty estimates for activity data, LULC change detection and 
emissions factors or carbon stocks can be done several ways, ranging from simple 
error propagation calculations (Tier 1) to more complex Monte Carlo simulations, 
also called bootstrapping or bagging (Tiers 2 and 3). Several approaches exist for 
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calculating error propagation. For example, different equations are recommended 
if input data are correlated (e.g., the same activity data or emission factors were 
used to calculate multiple input factors that are to be summed) or if individual 
uncertainty values are high (e.g., greater than 30 %) (GOFC-GOLD  2014 ; IPCC 
 2003 ). Monte Carlo simulations select random values within probability distribu-
tion functions (PDF) developed for activity data and associated carbon stock esti-
mates to calculate corresponding changes in carbon stocks. The PDFs represent the 
variability of the input variables and the simulation is undertaken many times to 
produce a mean carbon stock-change value and range of uncertainty (see IPCC 
 2003  and citations within for more detailed information on running Monte Carlo 
simulations). Simulation results can be combined with classifi cation accuracies to 
compute uncertainties for each pixel. This allows exploration of the variation of 
accuracy by LULC class or stratum, and where to target future measurements to 
achieve the greatest reductions in overall uncertainty (Saatchi et al.  2007 ). 
Generally speaking, Monte Carlo simulations require greater resources than error 
propagation equations, but both methods require quantitative uncertainty estimates 
for activity data, LULC changes, and carbon stocks.    

3.6     Challenges, Limitations, and Emerging Technologies 

 Monitoring LULC change and associated GHG emissions/reductions in a cost- 
effective manner remains a challenge in heterogeneous landscapes such as those 
dominated by smallholder agriculture. Monitoring change in management within 
LULC categories can be even more challenging, yet management is often a key 
component of smallholder carbon projects.  Technologies   are emerging to directly 
monitor carbon stocks (namely aboveground biomass), which could overcome 
some of these challenges. For example LiDAR shows promise for accurate direct 
estimation of vegetation structure, aboveground biomass, and carbon stocks (Goetz 
and Dubayah  2011 ; Goetz et al.  2009 ). While  direct measurement methods   are 
generally still in the research phase and may be cost-prohibitive for most projects, 
they may prove especially useful for smallholder settings as they can improve 
accuracy by removing the error associated with misclassifi cation of LULC, a 
potentially large source of uncertainty in heterogeneous landscapes. In the end, it 
is diffi cult to recommend a single methodological approach to monitoring LULC 
in smallholder landscapes as optimal methods will depend on the project area, size, 
available resources, time period, interventions, and other factors. An overall sum-
mary of the general methods discussed in each section of this chapter is presented 
in Table  3.8 . Time should be taken to assess these methods and their associated 
trade-offs, read the relevant key references and stay abreast of emerging remote 
sensing options to identify the most appropriate methodology for specifi c project 
conditions.
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