352 research outputs found
Advances in the proposed electromagnetic zero-point field theory of inertia
A NASA-funded research effort has been underway at the Lockheed Martin
Advanced Technology Center in Palo Alto and at California State University in
Long Beach to develop and test a recently published theory that Newton's
equation of motion can be derived from Maxwell's equations of electrodynamics
as applied to the zero-point field (ZPF) of the quantum vacuum. In this
ZPF-inertia theory, mass is postulated to be not an intrinsic property of
matter but rather a kind of electromagnetic drag force that proves to be
acceleration dependent by virtue of the spectral characteristics of the ZPF.
The theory proposes that interactions between the ZPF and matter take place at
the level of quarks and electrons, hence would account for the mass of a
composite neutral particle such as the neutron. An effort to generalize the
exploratory study of Haisch, Rueda and Puthoff (1994) into a proper
relativistic formulation has been successful. Moreover the principle of
equivalence implies that in this view gravitation would also be electromagnetic
in origin along the lines proposed by Sakharov (1968). With regard to exotic
propulsion we can definitively rule out one speculatively hypothesized
mechanism: matter possessing negative inertial mass, a concept originated by
Bondi (1957) is shown to be logically impossible. On the other hand, the linked
ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of
manipulation of inertia and gravitation, since both are postulated to be
electromagnetic phenomena. It is hoped that this will someday translate into
actual technological potential. A key question is whether the proposed
ZPF-matter interactions generating the phenomenon of mass might involve one or
more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no
figure
A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes
Air fluorescence measurements of cosmic ray energy must be corrected for
attenuation of the atmosphere. In this paper we show that the air-showers
themselves can yield a measurement of the aerosol attenuation in terms of
optical depth, time-averaged over extended periods. Although the technique
lacks statistical power to make the critical hourly measurements that only
specialized active instruments can achieve, we note the technique does not
depend on absolute calibration of the detector hardware, and requires no
additional equipment beyond the fluorescence detectors that observe the air
showers. This paper describes the technique, and presents results based on
analysis of 1258 air-showers observed in stereo by the High Resolution Fly's
Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics
Journa
Multipartite entangled states in coupled quantum dots and cavity-QED
We investigate the generation of multipartite entangled state in a system of
N quantum dots embedded in a microcavity and examine the emergence of genuine
multipartite entanglement by three different characterizations of entanglement.
At certain times of dynamical evolution one can generate multipartite entangled
coherent exciton states or multiqubit states by initially preparing the
cavity field in a superposition of coherent states or the Fock state with one
photon, respectively. Finally we study environmental effects on multipartite
entanglement generation and find that the decay rate for the entanglement is
proportional to the number of excitons.Comment: 9 pages, 4 figures, to appear in Phys. Rev.
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
A Likelihood Method for Measuring the Ultrahigh Energy Cosmic Ray Composition
Air fluorescence detectors traditionally determine the dominant chemical
composit ion of the ultrahigh energy cosmic ray flux by comparing the averaged
slant depth of the shower maximum, , as a function of energy to the
slant depths expect ed for various hypothesized primaries. In this paper, we
present a method to make a direct measurement of the expected mean number of
protons and iron by comparing the shap es of the expected
distributions to the distribution for data. The advantages of this method
includes the use of information of the full distribution and its ability to
calculate a flux for various cosmic ray compositi ons. The same method can be
expanded to marginalize uncertainties due to choice of spectra, hadronic models
and atmospheric parameters. We demonstrate the technique with independent
simulated data samples from a parent sample of protons and iron. We accurately
predict the number of protons and iron in the parent sample and show that the
uncertainties are meaningful.Comment: 11 figures, 22 pages, accepted by Astroparticle Physic
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …