2 research outputs found

    Sensor-Fused Nighttime System for Enhanced Pedestrian Detection in ADAS and Autonomous Vehicles

    No full text
    Ensuring a safe nighttime environmental perception system relies on the early detection of vulnerable road users with minimal delay and high precision. This paper presents a sensor-fused nighttime environmental perception system by integrating data from thermal and RGB cameras. A new alignment algorithm is proposed to fuse the data from the two camera sensors. The proposed alignment procedure is crucial for effective sensor fusion. To develop a robust Deep Neural Network (DNN) system, nighttime thermal and RGB images were collected under various scenarios, creating a labeled dataset of 32,000 image pairs. Three fusion techniques were explored using transfer learning, alongside two single-sensor models using only RGB or thermal data. Five DNN models were developed and evaluated, with experimental results showing superior performance of fused models over non-fusion counterparts. The late-fusion system was selected for its optimal balance of accuracy and response time. For real-time inferencing, the best model was further optimized, achieving 33 fps on the embedded edge computing device, an 83.33% improvement in inference speed over the system without optimization. These findings are valuable for advancing Advanced Driver Assistance Systems (ADASs) and autonomous vehicle technologies, enhancing pedestrian detection during nighttime to improve road safety and reduce accidents

    The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013

    No full text
    corecore