1,587 research outputs found

    Construction of Curtis-Phan-Tits system in black box classical groups

    Full text link
    We present a polynomial time Monte-Carlo algorithm for finite simple black box classical groups of odd characteristic which constructs all root SL2(q){\rm{SL}}_2(q)-subgroups associated with the nodes of the extended Dynkin diagram of the corresponding algebraic group.Comment: 35 page

    Two-dimensional quantum walk under artificial magnetic field

    Get PDF
    We introduce the Peierls substitution to a two-dimensional discrete-time quantum walk on a square lattice to examine the spreading dynamics and the coin-position entanglement in the presence of an artificial gauge field. We use the ratio of the magnetic flux through the unit cell to the flux quantum as a control parameter. For a given flux ratio, we obtain faster spreading for a small number of steps and the walker tends to be highly localized around the origin. Moreover, the spreading of the walk can be suppressed and decreased within a limited time interval for specific rational values of flux ratio. When the flux ratio is an irrational number, even for a large number of steps, the spreading exhibit diffusive behavior rather than the well-known ballistic one as in the classical random walk and there is a significant probability of finding the walker at the origin. We also analyze the coin-position entanglement and show that the asymptotic behavior vanishes when the flux ratio is different from zero and the coin-position entanglement become nearly maximal in a periodic manner in a long time range.Comment: 7 pages, 5 figures, sections 3 and 4 revise

    Qubit state transfer via discrete-time quantum walks

    Get PDF
    We propose a scheme for perfect transfer of an unknown qubit state via the discrete-time quantum walk on a line or a circle. For this purpose, we introduce an additional coin operator which is applied at the end of the walk. This operator does not depend on the state to be transferred. We show that perfect state transfer over an arbitrary distance can be achieved only if the walk is driven by an identity or a flip coin operator. Other biased coin operators and Hadamard coin allow perfect state transfer over finite distances only. Furthermore, we show that quantum walks ending with a perfect state transfer are periodic.Comment: 13 pages, 5 figure

    Dependent and Independent Parameters of Needleless Electrospinning

    Get PDF
    Electrospinning is a simple method to produce nanofibers from solutions and melt of different polymers and polymer blends. There is an extensive application in future of Electrospun nanofibers. Several methods for the production of nanofibers have been developed for their wide-scale production. In this chapter, we introduced the needleless roller electrospinning system that is well known under the trade name of nanospider and used as industrial production scale during the last decade. For industrial production, it is crucial to control and the measure all the spinning parameters of the needleless electrospinning system. Herein, all the electrospinning parameters of the needleless roller electrospinning system were determined and grouped as dependent and independent parameters. Each parameter was defined, and some experimental results are shown under their group. Using theoretical calculations, the minimum electrical field to start initiation of Taylor’s cone and the dimensionless electrospinning number was demonstrated. The dimensionless electrospinning number is important for the initiation of the electrospinning system. Each parameter explained in detail, and measurement methods of parameters were clarified. It was found that each parameter plays a major role in productivity and quality of nanofiber webs. Changing the dependent and independent parameters of the electrospinning, the fiber morphology can be adjusted according to demands

    Evaluation of Joint Multi-Instance Multi-Label Learning For Breast Cancer Diagnosis

    Full text link
    Multi-instance multi-label (MIML) learning is a challenging problem in many aspects. Such learning approaches might be useful for many medical diagnosis applications including breast cancer detection and classification. In this study subset of digiPATH dataset (whole slide digital breast cancer histopathology images) are used for training and evaluation of six state-of-the-art MIML methods. At the end, performance comparison of these approaches are given by means of effective evaluation metrics. It is shown that MIML-kNN achieve the best performance that is %65.3 average precision, where most of other methods attain acceptable results as well

    New Methods in the Study of Roller Electrospinning Mechanism

    Get PDF
    corecore