1,192 research outputs found

    Rigorous Inequalities between Length and Time Scales in Glassy Systems

    Full text link
    Glassy systems are characterized by an extremely sluggish dynamics without any simple sign of long range order. It is a debated question whether a correct description of such phenomenon requires the emergence of a large correlation length. We prove rigorous bounds between length and time scales implying the growth of a properly defined length when the relaxation time increases. Our results are valid in a rather general setting, which covers finite-dimensional and mean field systems. As an illustration, we discuss the Glauber (heat bath) dynamics of p-spin glass models on random regular graphs. We present the first proof that a model of this type undergoes a purely dynamical phase transition not accompanied by any thermodynamic singularity.Comment: 24 pages, 3 figures; published versio

    Transition-Metal-Stabilized Heavy Tetraphospholide Anions

    Get PDF
    Phosphorus analogues of the ubiquitous cyclopentadienyl (Cp) are a rich and diverse family of compounds, which have found widespread use as ligands in organometallic complexes. By contrast, phospholes incorporating heavier group 14 elements (Si, Ge, Sn, and Pb) are hardly known. Here, we demonstrate the isolation of the first metal complexes featuring heavy cyclopentadienyl anions SnP42– and PbP42–. The complexes [(η4-tBu2C2P2)2Co2(μ,η5:η5–P4Tt)] [Tt = Sn (6), Pb (7)] are formed by reaction of white phosphorus (P4) with cyclooctadiene cobalt complexes [Ar′TtCo(η4-P2C2tBu2)(η4–COD)] [Tt = Sn (2), Pb (3), Ar′ = C6H3-2,6{C6H3-2,6-iPr2}2, COD = cycloocta-1,5-diene] and Tt{Co(η4-P2C2tBu2)(COD)}2 [Tt = Sn (4), Pb (5)]. While the SnP42– complex 6 was isolated as a pure and stable compound, compound 7 eliminated Pb(0) below room temperature to afford [(η4-tBu2C2P2)2Co2(μ,η4:η4–P4) (8), which is a rare example of a tripledecker complex with a P42– middle deck. The electronic structures of 6–8 are analyzed using theoretical methods including an analysis of intrinsic bond orbitals and magnetic response theory. Thereby, the aromatic nature of P5– and SnP42– was confirmed, while for P42–, a specific type of symmetry-induced weak paramagnetism was found that is distinct from conventional antiaromatic species

    Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

    Full text link
    We outline the many physics opportunities offered by a multi-purpose fixed-target experiment using the LHC proton and Pb beams extracted by a bent crystal. In a proton run with the LHC 7-TeV beam, one can analyze pp, pd and pA collisions at sqrt(s_NN)~115 GeV and even higher using the Fermi motion in a nuclear target. In a Pb run with a 2.76 TeV-per-nucleon beam, sqrt(s_NN) is as high as 72 GeV. Bent crystals can be used to extract about 5x10^8 protons/s; the integrated luminosity over a year reaches 0.5fb-1 on a typical 1 cm-long target without species limitation. Such an extraction mode does not alter the performance of the collider experiments at the LHC. By instrumenting the target-rapidity region, gluon and heavy-quark proton and neutron PDFs can be accessed at large x and even at x larger than 1 in the nuclear case. Single diffractive physics and, for the first time, the large negative-xF domain can be accessed. The nuclear target-species versatility provides a unique opportunity to study nuclear matter vs. the features of the hot and dense matter formed in heavy-ion collisions, which can be studied in PbA collisions over the full range of target-rapidity domain with a large variety of nuclei. The polarization of hydrogen and nuclear targets allows an ambitious spin program, including measurements of the QCD lensing effects which underlie the Sivers single-spin asymmetry, the study of transversity distributions and possibly of polarized PDFs. We also emphasize the potential offered by pA ultra-peripheral collisions where the nucleus target A is used as a coherent photon source, mimicking photoproduction processes in ep collisions. Finally, we note that W and Z bosons can be produced and detected in a fixed-target experiment and in their threshold domain for the first time, providing new ways to probe the partonic content of the proton and the nucleus.Comment: 14 pages, 2 figures, 5 tables. Comments are welcom

    Human cytomegalovirus infection in tumor cells of the nervous system is not detectable with standardized pathologico-virological diagnostics.

    Get PDF
    BACKGROUND Experimental findings have suggested that human cytomegalovirus (HCMV) infection of tumor cells may exert oncomodulatory effects that enhance tumor malignancy. However, controversial findings have been published on the presence of HCMV in malignant tumors. Here, we present the first study that systematically investigates HCMV infection in human nervous system tumors by highly sensitive immunohistochemistry in correlation with the HCMV serostatus of the patients. METHODS Immunohistochemical and quantitative PCR-based methods to detect different HCMV antigens and genomic HCMV DNA were optimized prior to the investigation of pathological samples. Moreover, the pathological results were matched with the HCMV serostatus of the patients. RESULTS HCMV immediate-early, late, and pp65 antigens could be detected in single cells from HCMV strain Hi91-infected UKF-NB-4 neuroblastoma cells after 1:1024 dilution with noninfected UKF-NB-4 cells. Genomic HCMV DNA could be detected in copy numbers as low as 430 copies/mL. However, we did not detect HCMV in tumors from a cohort of 123 glioblastoma, medulloblastoma, or neuroblastoma patients. Notably, we detected nonspecifically positive staining in tumor tissues of HCMV seropositive and seronegative glioblastoma patients. The HCMV serostatus of 67 glioblastoma patients matched the general epidemiological prevalence data for Western countries (72% of female and 57% of male glioblastoma patients were HCMV seropositive). Median survival was not significantly different in HCMV seropositive versus seronegative glioblastoma patients. CONCLUSIONS The prevalence of HCMV-infected tumor cells may be much lower than previously reported based on highly sensitive detection methods

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore