Abstract

Glassy systems are characterized by an extremely sluggish dynamics without any simple sign of long range order. It is a debated question whether a correct description of such phenomenon requires the emergence of a large correlation length. We prove rigorous bounds between length and time scales implying the growth of a properly defined length when the relaxation time increases. Our results are valid in a rather general setting, which covers finite-dimensional and mean field systems. As an illustration, we discuss the Glauber (heat bath) dynamics of p-spin glass models on random regular graphs. We present the first proof that a model of this type undergoes a purely dynamical phase transition not accompanied by any thermodynamic singularity.Comment: 24 pages, 3 figures; published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 23/03/2019