55 research outputs found

    Self-assembly of micelles into designed networks

    Get PDF
    The EO20PO70EO20(molecular weight 5800) amphiphile as a template is to form dispersed micelle structures. Silver nanoparticles, as inorganic precursors synthesized by a laser ablation method in pure water, are able to produce the highly ordered vesicles detected by TEM micrography. The thickness of the outer layer of a micelle, formed by the silver nanoparticles interacting preferentially with the more hydrophilic EO20block, was around 3.5 nm. The vesicular structure ensembled from micelles is due to proceeding to the mixture of cubic and hexagonal phases

    A straw drift chamber spectrometer for studies of rare kaon decays

    Full text link
    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

    Association between P300 Responses to Auditory Oddball Stimuli and Clinical Outcomes in the Psychosis Risk Syndrome

    Get PDF
    Importance: In most patients, a prodromal period precedes the onset of schizophrenia. Although clinical criteria for identifying the psychosis risk syndrome (PRS) show promising predictive validity, assessment of neurophysiologic abnormalities in at-risk individuals may improve clinical prediction and clarify the pathogenesis of schizophrenia. Objective: To determine whether P300 event-related potential amplitude, which is deficient in schizophrenia, is reduced in the PRS and associated with clinical outcomes. Design, Setting, and Participants: Auditory P300 data were collected as part of the multisite, case-control North American Prodrome Longitudinal Study (NAPLS-2) at 8 university-based outpatient programs. Participants included 552 individuals meeting PRS criteria and 236 healthy controls with P300 data. Auditory P300 data of participants at risk who converted to psychosis (n = 73) were compared with those of nonconverters who were followed up for 24 months and continued to be symptomatic (n = 135) or remitted from the PRS (n = 90). Data were collected from May 27, 2009, to September 17, 2014, and were analyzed from December 3, 2015, to May 1, 2019. Main Outcomes and Measures: Baseline electroencephalography was recorded during an auditory oddball task. Two P300 subcomponents were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. Results: This study included 788 participants. The PRS group (n = 552) included 236 females (42.8%) (mean [SD] age, 19.21 [4.38] years), and the healthy control group (n = 236) included 111 females (47.0%) (mean [SD] age, 20.44 [4.73] years). Target P3b and novelty P3a amplitudes were reduced in at-risk individuals vs healthy controls (d = 0.37). Target P3b, but not novelty P3a, was significantly reduced in psychosis converters vs nonconverters (d = 0.26), and smaller target P3b amplitude was associated with a shorter time to psychosis onset in at-risk individuals (hazard ratio, 1.45; 95% CI, 1.04-2.00; P =.03). Participants with the PRS who remitted had baseline target P3b amplitudes that were similar to those of healthy controls and greater than those of converters (d = 0.51) and at-risk individuals who remained symptomatic (d = 0.41). Conclusions and Relevance: In this study, deficits in P300 amplitude appeared to precede psychosis onset. Target P3b amplitudes, in particular, may be sensitive to clinical outcomes in the PRS, including both conversion to psychosis and clinical remission. Auditory target P3b amplitude shows promise as a putative prognostic biomarker of clinical outcome in the PRS

    Reliability of mismatch negativity event-related potentials in a multisite, traveling subjects study

    Get PDF
    Objective: To determine the optimal methods for measuring mismatch negativity (MMN), an auditory event-related potential (ERP), and quantify sources of MMN variance in a multisite setting. Methods: Reliability of frequency, duration, and double (frequency + duration) MMN was determined from eight traveling subjects, tested on two occasions at eight laboratory sites. Deviant-specific variance components were estimated for MMN peak amplitude and latency measures using different ERP processing methods. Generalizability (G) coefficients were calculated using two-facet (site and occasion), fully-crossed models and single-facet (occasion) models within each laboratory to assess MMN reliability. Results: G-coefficients calculated from two-facet models indicated fair (0.4 0.5). MMN amplitude reliability was greater than latency reliability, and reliability with mastoid referencing significantly outperformed nose-referencing. Conclusions: EEG preprocessing methods have an impact on the reliability of MMN amplitude. Within site MMN reliability can be excellent, consistent with prior single site studies. Significance: With standardized data collection and ERP processing, MMN can be reliably obtained in multisite studies, providing larger samples sizeswithin rare patient groups

    Deficits in auditory predictive coding in individuals with the psychosis risk syndrome: Prediction of conversion to psychosis

    Get PDF
    The mismatch negativity (MMN) event-related potential (ERP) component is increasingly viewed as a prediction error signal elicited when a deviant sound violates the prediction that a frequent "standard" sound will repeat. Support for this predictive coding framework emerged with the identification of the repetition positivity (RP), a standard stimulus ERP component that increases with standard repetition and is thought to reflect strengthening of the standard's memory trace and associated predictive code. Using electroencephalographic recordings, we examined the RP elicited by repeating standard tones presented during a traditional "constant standard" MMN paradigm in individuals with the psychosis risk syndrome (PRS; n = 579) and healthy controls (HC; n = 241). Clinical follow-up assessments identified PRS participants who converted to a psychotic disorder (n = 77) and PRS nonconverters who were followed for the entire 24-month clinical follow-up period and either remained symptomatic (n = 144) or remitted from the PRS (n = 94). In HC, RP linearly increased from early-to late-appearing standards within local trains of repeating standards (p <.0001), consistent with auditory predictive code/memory trace strengthening. Relative to HC, PRS participants showed a reduced RP across standards (p =.0056). PRS converters showed a relatively small RP deficit for early appearing standards relative to HC (p =.0.0107) and a more prominent deficit for late-appearing standards (p =.0006) relative to both HC and PRS-remitted groups. Moreover, greater RP deficits predicted shorter time to conversion in a subsample of unmedicated PRS individuals (p=.02). Thus, auditory predictive coding/memory trace deficits precede psychosis onset and predict future psychosis risk in PRS individuals

    Association of Structural Magnetic Resonance Imaging Measures With Psychosis Onset in Individuals at Clinical High Risk for Developing Psychosis:An ENIGMA Working Group Mega-analysis

    Get PDF
    IMPORTANCE The ENIGMA clinical high risk (CHR) for psychosis initiative, the largest pooled neuroimaging sample of individuals at CHR to date, aims to discover robust neurobiological markers of psychosis risk.OBJECTIVE To investigate baseline structural neuroimaging differences between individuals at CHR and healthy controls as well as between participants at CHR who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-PS-).DESIGN, SETTING, AND PARTICIPANTS In this case-control study, baseline T1-weighted magnetic resonance imaging (MRI) data were pooled from 31 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. CHR status was assessed using the Comprehensive Assessment of At-Risk Mental States or Structured Interview for Prodromal Syndromes. MRI scans were processed using harmonized protocols and analyzed within a mega-analysis and meta-analysis framework from January to October 2020.MAIN OUTCOMES AND MEASURES Measures of regional cortical thickness (CT), surface area, and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR group vs control group) and conversion status (CHR-PS+ group vs CHR-PS- group vs control group).RESULTS Of the 3169 included participants, 1428 (45.1%) were female, and the mean (SD; range) age was 21.1 (4.9; 9.5-39.9) years. This study included 1792 individuals at CHR and 1377 healthy controls. Using longitudinal clinical information, 253 in the CHR-PS+ group, 1234 in the CHR-PS- group, and 305 at CHR without follow-up data were identified. Compared with healthy controls, individuals at CHR exhibited widespread lower CT measures (mean [range] Cohen d = -0.13 [-0.17 to -0.09]), but not surface area or subcortical volume. Lower CT measures in the fusiform, superior temporal, and paracentral regions were associated with psychosis conversion (mean Cohen d = -0.22; 95% CI, -0.35 to 0.10). Among healthy controls, compared with those in the CHR-PS+ group, age showed a stronger negative association with left fusiform CT measures (F = 9.8; P < .001; q < .001) and left paracentral CT measures (F = 5.9; P = .005; q = .02). Effect sizes representing lower CT associated with psychosis conversion resembled patterns of CT differences observed in ENIGMA studies of schizophrenia (rho = 0.35; 95% CI, 0.12 to 0.55; P = .004) and individuals with 22q11.2 microdeletion syndrome and a psychotic disorder diagnosis (rho = 0.43; 95% CI, 0.20 to 0.61; P = .001).CONCLUSIONS AND RELEVANCE This study provides evidence for widespread subtle, lower CT measures in individuals at CHR. The pattern of CT measure differences in those in the CHR-PS+ group was similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread disruptions in CT coupled with abnormal age associations in those at CHR may point to disruptions in postnatal brain developmental processes.Question How are brain morphometric features associated with later psychosis conversion in individuals at clinical high risk (CHR) for developing psychosis?Findings In this case-control study including 3169 participants, lower cortical thickness, but not cortical surface area or subcortical volume, was more pronounced in individuals at CHR in a manner highly consistent with thinner cortex in individuals with established psychosis. Regions that displayed lower cortical thickness in individuals at CHR who later developed a psychotic disorder additionally displayed abnormal associations with age.Meaning In this study, CHR status and later transition to psychosis was robustly associated with lower cortical thickness; abnormal age associations and specificity to cortical thickness may point to aberrant postnatal brain development in individuals at CHR, including pruning and myelination.This case-control study investigates baseline structural magnetic resonance imaging (MRI) differences between individuals at clinical high risk and healthy controls as well as between participants at clinical high risk who later developed a psychotic disorder and those who did not

    Stability of mismatch negativity event-related potentials in a multisite study

    Get PDF
    Objectives: Mismatch negativity (MMN), an auditory event-related potential sensitive to deviance detection, is smaller in schizophrenia and psychosis risk. In a multisite study, a regression approach to account for effects of site and age (12–35 years) was evaluated alongside the one-year stability of MMN. Methods: Stability of frequency, duration, and frequency + duration (double) deviant MMN was assessed in 167 healthy subjects, tested on two occasions, separated by 52 weeks, at one of eight sites. Linear regression models predicting MMN with age and site were validated and used to derive standardized MMN z-scores. Variance components estimated for MMN amplitude and latency measures were used to calculate Generalizability (G) coefficients within each site to assess MMN stability. Trait-like aspects of MMN were captured by averaging across occasions and correlated with subject traits. Results: Age and site accounted for less than 7% of MMN variance. G-coefficients calculated at electrode Fz were stable (G = 0.63) across deviants and sites for amplitude measured in a fixed window, but not for latency (G = 0.37). Frequency deviant MMN z-scores averaged across tests negatively correlated with averaged global assessment of functioning. Conclusion: MMN amplitude is stable and can be standardized to facilitate longitudinal multisite studies of patients and clinical features

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation
    corecore