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on DNA methylation patterns (DNAm age), and 
cross-sectional and longitudinal cognition and AD-
related neuroimaging phenotypes (volumetric MRI 
and Amyloid-β PET) in the Australian Imaging, Bio-
markers and Lifestyle (AIBL) and the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI). Significant 
associations were observed between age acceleration 
using the Hannum epigenetic clock and cross-sec-
tional hippocampal volume in AIBL and replicated in 
ADNI. In AIBL, several other findings were observed 
cross-sectionally, including a significant association 
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Abstract  The concept of age acceleration, the dif-
ference between biological age and chronological 
age, is of growing interest, particularly with respect 
to age-related disorders, such as Alzheimer’s Disease 
(AD). Whilst studies have reported associations with 
AD risk and related phenotypes, there remains a lack 
of consensus on these associations. Here we aimed to 
comprehensively investigate the relationship between 
five recognised measures of age acceleration, based 
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between hippocampal volume and the Hannum and 
Phenoage epigenetic clocks. Further, significant 
associations were also observed between hippocam-
pal volume and the Zhang and Phenoage epigenetic 
clocks within Amyloid-β positive individuals. How-
ever, these were not validated within the ADNI 
cohort. No associations between age acceleration and 
other Alzheimer’s disease-related phenotypes, includ-
ing measures of cognition or brain Amyloid-β burden, 
were observed, and there was no association with 
longitudinal change in any phenotype. This study pre-
sents a link between age acceleration, as determined 
using DNA methylation, and hippocampal volume 
that was statistically significant across two highly 
characterised cohorts. The results presented in this 
study contribute to a growing literature that supports 
the role of epigenetic modifications in ageing and 
AD-related phenotypes.

Keywords  DNA methylation · Epigenetics · 
Alzheimer’s disease · Hippocampal volume · 
Cognition · Ageing

Abbreviations 
AD	� Alzheimer’s disease
DNAm age	� DNA methylation age
AIBL	� Australian Imaging Biomarkers and 

Lifestyle
ADNI	� Alzheimer’s Disease Neuroimaging 

Initiative
Aβ	� Amyloid-β
a-DMRs	� Ageing-associated differentially meth-

ylated regions

CpG	� Cytosine-phosphate-guanine
BLUP	� Best linear unbiased prediction
EN	� Elastic net
MRI	� Magnetic resonance imaging
PET	� Positron emission topography
HIV	� Human immunodeficiency virus
BMI	� Body mass index
SUV	� Standardised uptake value
SUVR	� Standardised uptake value ratio
CL	� Centiloids
MPRAGE	� Magnetisation-prepared rapid gradient 

echo
ICV	� Intra-cranial volume
MMSE	� Mini-mental state exam
CDR	� Clinical dementia rating
APOE	� Apolipoprotein E
PACC​	� Pre-Alzheimer’s cognitive composite
PiB	� 11C–Pittsburgh compound B
DiffAge	� Difference in age
DBAge	� Disproportionate biological ageing
MCI	� Mild cognitive impairment
CU	� Cognitively unimpaired
AIC	� Akaike information criterion
FDR	� False discovery rate
CI	� Confidence interval
SE	� Standard error
ANOVA	� Analysis of variance

Introduction

Biological ageing, which affects most living organ-
isms, can be characterised by a gradual loss of 
physical integrity, leading to impaired function and 
increased susceptibility to age-related disease and, 
ultimately, death [1]. Ageing is driven by genetic 
factors and external events, such as lifestyle, envi-
ronment and their interaction [2]. Age is regarded 
as the most important non-modifiable risk factor for 
all neurodegenerative diseases, including Alzhei-
mer’s disease (AD), and has been associated with 
changes in DNA methylation patterns [3].

Age-associated deregulation of the epigenome 
is a hallmark of the ageing process and has been 
studied extensively in recent years, which has 
resulted in evidence suggesting that changes in epi-
genetic patterns are dynamic through entire life-
times in all species, tissues and cell types [4]. The 
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ageing process leads to changes in DNA methyla-
tion patterns throughout the genome, and this has 
been termed epigenetic drift. Such changes result 
in genome wide hypomethylation and site-wide 
hypermethylation [2]. Epigenetic drift is unpre-
dictable as it involves non-directional changes of 
both hypomethylation and hypermethylation of 
DNA. This limits any prediction of changes in the 
methylome amongst ageing individuals [2]. How-
ever, some evidence points towards the existence of 
ageing-associated differentially methylated regions 
(a-DMRs), which are consecutive groups of cyto-
sine-phosphate-guanine (CpG) dinucleotides, sites 
that exhibit change in a constant direction over time 
[5–7]. Thus, methylation changes may not be purely 
stochastic but may also be associated with biologi-
cal mechanisms closely linked to ageing processes 
and longevity.

DNA methylation clocks, also commonly referred 
to as epigenetic clocks, are DNA methylation-based 
estimates of biological age, which are developed 
through the combined use of mathematical algo-
rithms and sets of CpGs that are strongly correlated 
with age (r ≥ 0.8) [8]. In 2011, Bocklandt et  al. [9] 
developed an epigenetic clock that is able to predict 
chronological age in years, using peripheral blood 
with an average error of 5.2 years, based on 2 CpG 
sites present on the Illumina 27 k array. Of the epige-
netic clocks developed since, the Hannum clock [10] 
was trained on blood derived DNA and comprises 71 
CpG sites selected from the Illumina 450 k array, and 
the Horvath clock [11], developed around the same 
time, was constructed using multiple tissues and was 
intended to capture age-related changes, independ-
ent of tissue type. The Horvath clock is composed of 
353 CpG sites that are all present on the earliest gen-
eration Illumina 27 k array [11]. Subsequently, Zhang 
and colleagues [12] developed two clocks based on 
two different training methods—best linear unbi-
ased prediction (BLUP) and elastic net (EN). These 
two clocks were trained on a very large sample size 
of 13,661 samples, composed primarily of periph-
eral blood (13,402 samples) and saliva (259 sam-
ples). These clocks comprise 319,607 and 514 CpG 
sites, respectively, present on the Illumina 450 k and 
Illumina EPIC arrays. The second generation Pheno-
Age clock, developed by Levine and colleagues [13], 
is an epigenetic predictor of phenotypic age, a better 
representative than chronological age, of age-related 

biological dysregulation, derived from measures of 
clinical biomarkers. This difference led to substantial 
improvements in prediction of mortality and health 
span (number of years lived disease-free) compared 
to first generation clocks by Hannum and Horvath. 
The Phenoage clock was trained on blood derived 
DNA and comprises 513 CpG sites [13] and captures 
multifactorial ageing conditions, which is consist-
ent with the fundamental underpinnings of ageing 
research.

Chronological age, defined as an individual’s legal 
age as calculated from birth to the current date, is not 
always an accurate indicator of the biological process 
of ageing, which makes it difficult to evaluate meas-
ures that promote longevity and healthy ageing [14]. 
Consequently, biological age has been proposed as 
a method to accurately predict the ageing status of 
an individual or tissue and could be reliably used to 
predict the onset of multiple diseases, assess disease 
risk and aid in the development of preventative strate-
gies [14]. Since peripheral blood is easily accessible 
and largely non-invasive, it is suitable for multiple, 
repeated sampling over long periods of time, such as 
annual doctors’ visits, allowing for age or disease-
related changes to be captured relatively early in the 
disease process and for appropriate preventative strat-
egies based on the epigenetic evidence, to be put in 
place. Similarly, since obtaining samples is relatively 
non-invasive, multiple samples can be obtained dur-
ing lifestyle interventions or drug trials, allowing 
response to treatment or intervention to be monitored 
easily and inexpensively, especially when compared 
to imaging modalities commonly used, such as mag-
netic resonance imaging (MRI) and positron emission 
topography (PET).

A measure of age acceleration (or deceleration) 
can be calculated based on the difference between 
an individual’s biological age (estimated through 
the use of epigenetic clocks) and chronological age 
(an individual’s legal age) [15]. Accelerated ageing 
has been documented in several genetic syndromes 
such as Down syndrome [16] and Werner’s syn-
drome [17]. Additionally, premature ageing in HIV 
infected individuals [18, 19] has been observed as 
well as in individuals with a high body mass index 
(BMI) and metabolic diseases [20]. As well, there 
is evidence for accelerated ageing in neurodegen-
erative diseases such as Parkinson’s disease [21], 
Huntington’s disease [22] and AD [15]. DNA 
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methylation, both hyper- and hypomethylation, has 
been associated with AD in several brain regions 
[23–27]; however, it is still largely unclear whether 
markers in peripheral blood are truly reflective of 
the same changes as those observed in the brain 
[28]. In studies measuring DNA methylation age 
(DNAm age), accelerated ageing has been linked to 
an increase in AD pathology (diffuse plaques, neu-
ritic plaques and Amyloid-β (Aβ) burden) [29], and 
in studies utilising peripheral DNAm age, acceler-
ated ageing has been associated with reduced cogni-
tive and physical fitness and an increase in all-cause 
mortality [15]. Whilst there is some evidence that 
accelerated ageing is associated with AD-related 
pathology and cognition, there is also conflicting 
research which does not support this. For example, 
Starnawska and colleagues [30] found that DNAm 
age is not associated with cognition in middle-age 
monozygotic twins and in a cohort of 964 middle-
aged adults; Belsky et  al. [31] also found no asso-
ciations between DNAm age and cognition. How-
ever, it is difficult to compare results of studies as 
each utilised a different clock methodology to gen-
erate age estimates. Starnawska et al. [30] used the 
Hannum and Horvath clocks, and Belsky [31] used 
telomere length, the Klemera-Doubal method and 
pace of ageing clocks. Further, since the field is rap-
idly expanding and new clocks are being developed, 
consideration must be put into clock choice depend-
ing on the cohort and data available. Based on the 
inconsistency of results and the paucity of litera-
ture clearly describing the association of DNAm 
age and AD-related phenotypes, we set out to test 
the hypothesis that accelerated ageing is associ-
ated with differences in AD-related phenotypes. 
Using the highly characterised prospective longitu-
dinal Australian Imaging, Biomarkers and Lifestyle 
(AIBL) study cohort we aimed to comprehensively 
investigate several methods of assessing DNAm age 
to assess (1) whether accelerated ageing is associ-
ated with cross-sectional measures of cognition and 
AD-related neuroimaging phenotypes (volumetric 
MRI and Aβ-PET) and (2) whether an individual’s 
current DNAm age is a predictor of future longi-
tudinal changes in these two phenotypes. We then 
sought to test the robustness of our findings through 
validation within a similar highly characterised lon-
gitudinal cohort, the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI).

Materials and methods

Participants

This study included participants enrolled in both the 
ongoing prospective longitudinal Australian Imag-
ing, Biomarkers and Lifestyle and the multi-centre, 
longitudinal Alzheimer’s Disease Neuroimaging Ini-
tiative cohort studies. Detailed descriptions of both 
AIBL [32, 33] and ADNI [34] have been published 
previously. Participants enrolled in AIBL or ADNI 
were selected for inclusion in the current study only 
if methylation data and longitudinal (> 3 timepoints) 
data was available for the respective phenotype ana-
lysed (i.e. PET imaging and MRI or cognition).

Neuroimaging and cognitive data

Individuals within the AIBL cohort underwent brain 
Aβ imaging by positron emission tomography (PET) 
using one of three tracers: 11C–Pittsburgh compound 
B (PiB), 18F-florbetapir or 18F-flutemetamol. Of these, 
373 had > 3 timepoints and were included in this study. 
Similarly, ADNI participants underwent Aβ PET imag-
ing studies with either 18F-florbetaben or 18F-florbetapir, 
with 486 participants included for validation purposes. 
In both cohorts, resulting Aβ PET scans were analysed 
using the CapAIBL software [35], an open access, web-
based magnetic resonance (MR)-less algorithm, to gen-
erate standardised uptake value (SUV) ratios (SUVR) 
for all tracers and their associated. These tracer specific 
SUVR levels were then transformed and expressed 
in centiloid values (CL) as described previously [36, 
37]. Aβ PET status was considered as Aβ negative 
(Aβ − ; < 20 CL) or Aβ positive (Aβ + ; ≥ 20 CL).

Of the 373 AIBL participants included in this 
study, 329 also had available MRI data, whilst 382 of 
the included ADNI participants underwent an MRI 
scan. MRI images were obtained at 3  T using the 
ADNI T1 magnetisation-prepared rapid gradient echo 
(MPRAGE) protocol with subsequent estimation of 
all cortical volumes from the T1 using Freesurfer, 
as previously described [13]. All volumes were cor-
rected for normal ageing and ICV, with left and right 
volumes averaged. Volumetric corrections were made 
using a regression-based approach against a reference 
population that included ‘super’ healthy subjects, 
being cognitively unimpaired (MMSE > 28, CDR = 0) 
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Ab negative individuals who did not carry an Apoli-
poprotein E (APOE) ε4 allele.

Both AIBL and ADNI participants undertook com-
prehensive neuropsychological assessment as previ-
ously described [32–34]. The resulting test scores 
were used for the calculation of the pre-Alzheimer’s 
cognitive composite (PACC), in AIBL, as described 
by Donohue et  al. [38] and a modified PACC for 
ADNI [39]. This data was available at > 3 timepoints 
for 358 (out of 373) and 469 (out of 486) individuals 
from AIBL and ADNI, respectively.

Genetic and epigenetic data

AIBL and ADNI study participant DNA was iso-
lated for downstream analysis from whole blood 
using QIAamp DNA blood spin column kits (Qiagen, 
Valencia, CA, USA) as described previously [32–34]. 
Likewise, APOE genotyping protocols for AIBL 
and ADNI have been published previously [40, 41]. 
APOE carrier status was defined as the presence (one 
or two copies of the APOE ε4 allele) or absence (zero 
copies of the APOE ε4 allele).

DNA methylation analysis was conducted as previ-
ously described [41, 42]. Briefly, DNA samples were 
bisulphite converted using EZ DNA Methylation Kits 
(Zymo Research, Orange, CA, USA), and genome-wide 
DNA methylation patterns were analysed using the 
Infinium HumanMethylation EPIC (850  k) BeadChip 
array (Illumina, Inc., San Diego, CA, USA). BeadChips 
were washed, labelled using single-base extension, 
stained with multiple layers of fluorescence and scanned 
using the Illumina iScan system (Illumina Inc, CA). QC 
and normalisation of generated DNA methylation data 
were undertaken using the meffil package in R [43] (Ver-
sion 3.5.0.) as previously described [41, 42]. Samples 
that failed QC were excluded from further analysis.

Estimation of DNA methylation age

Five clock methodologies (Horvath [11], Hannum [10], 
Phenoage [13], Zhang elastic net (EN) and Zhang best 
linear unbiased prediction (BLUP)) [12] were utilised 
to calculate age estimates (DNAm age) for all AIBL 
(n = 373) and ADNI (n = 486) samples. Each clock is 
composed of a unique, defined set of CpG sites whose 
DNA methylation levels are used to generate an esti-
mate of DNAm age. The CpG sites used in the calcula-
tion of each clock were chosen based on the statistical 

methodology specific to each clock [10–13]. In the cur-
rent study, we utilised both disproportionate biological 
age (DBAge), which is the residual from regressing 
biological age on chronological age [29], and differ-
ence in age (DiffAge) [44], calculated by subtracting 
chronological age from biological age, as measures of 
age acceleration/deceleration. Both methodologies for 
calculating deviations in biological age from chrono-
logical age are a widely used and accepted methods 
to quantify ageing [44, 45]. The difference between 
DBAge and DiffAge is that the latter is a relative meas-
ure representing the difference between chronological 
age and biological age at the individual level, irrespec-
tive of other samples, whereas DBAge measures the 
difference between an individual’s DNAm age and the 
predicted DNAm age for that individual’s chronological 
age based on all samples present in the cohort. Thus, 
DiffAge measures the degree of ageing when compared 
to all other samples in the cohort. Here, we present only 
DBAge results as DiffAge and DBAge results were 
highly correlated in both the AIBL (Horvath R2 = 0.92; 
Zhang BLUP R2 = 0.97; Zhang EN R2 = 0.94, Pheno-
age R2 = 0.98; Supplementary Fig. 1, Additional File 1) 
and ADNI (Horvath R2 = 0.96; Zhang BLUP R2 = 1.00; 
Zhang EN R2 = 0.96, Phenoage R2 = 0.99; Supplemen-
tary Fig. 2, Additional File 1) cohorts. DiffAge results 
can be found in Additional file 1.

Statistical analysis

Statistical analyses were carried out in R Version 
4.1.2 for Macintosh. Baseline demographic data anal-
yses provided means, standard deviations and per-
centages across the whole cohort and by confirmed 
classifications of cognitively unimpaired (CU), mild 
cognitive impairment (MCI) and Alzheimer’s dis-
ease (AD). Analysis of variance (ANOVA; age) and 
chi-squared tests (gender, years of education, APOE 
ε4 + ve, high Aβ burden, smoking status) were used 
to determine the significance of differences between 
groups. These demographic and clinical character-
istics are summarised in Table  1. For all analyses 
described below, analyses were first undertaken in 
the AIBL sample, with associations surviving correc-
tion for false discovery rate (FDR) [46] subsequently 
tested in the ADNI sample.

To determine whether accelerated age is associ-
ated with cross-sectional measures of cognition (the 
pre-Alzheimer’s cognitive composite (PACC)) and 
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neuroimaging phenotypes (grey and white matter 
volume, hippocampal volume, ventricle volume and 
Aβ burden) in the brain, linear regressions were uti-
lised. Phenotype outcomes (cognition and neuroim-
aging phenotypes) were set as the dependent varia-
bles, and the measures of methylation age estimates 
set as the independent variables. APOE ε4 (absence/
presence), sex (binary), age (years), years of educa-
tion (categorical) and smoking status [47] (binary) 
were included as covariates. The most appropriate 
model to fit the data was defined using a stepwise 
selection based on the Akaike information criterion 
(AIC) [48]; this model was defined as below:

To determine whether an individual’s current 
DBAge or DiffAge is an indicator of longitudinal 
change in cognition and neuroimaging phenotypes, 
linear regressions were utilised with FDR correction. 
Here, we calculated the rate of change in the outcome 
of interest (cognition and each neuroimaging pheno-
type), in individuals with at least three timepoints of 
assessments, using linear regressions to estimate indi-
vidual model slopes. The slope value was then used as 
the dependent variable in subsequent analyses, with 
the model intercept included as a covariate, in addi-
tion to APOE ε4 (absence/presence), sex (binary), age 
(years), years of education (categorical) and smoking 
status (binary). As with previous model selection, the 
model with the best fit was chosen using the AIC and 
was defined as below:

Results

Demographic data for the AIBL and ADNI imaged 
cohorts and clinical classification (CU, MCI and AD) 
with available methylation data are presented in Table 1. 
This study assessed 373 AIBL participants (CU = 240, 
MCI = 60 and AD = 64), aged 73.43 ± 6.99  years 
with 197 females at baseline, and 486 ADNI par-
ticipants (CU = 166, MCI = 256, AD = 64), aged 
73.9 ± 7.51  years with 227 females at baseline. In the 

Phenotype ∼ DiffAge OR DBAge + Age + Sex + APOE�4

+ Years of education + Smoking Status

Slope ∼ DiffAge OR DBAge residual + Intercept + Age + Sex

+ APOE�4 + Years of education + Smoking Status

AIBL cohort, significant differences were observed 
when comparing age across clinical classifications 
(p = 0.0003, sex (p = 0.017), APOE ε4 allele carriage 
(p = 3.254e − 09) and high Aβ burden (p = 2.2e − 16). 
In the ADNI cohort, significant differences were 
observed when comparing APOE ε4 allele carriage 
(p = 1.615e − 09) and high Aβ burden (p = 1.372e − 14).

Accelerated biological ageing is not associated with 
cross‑section and longitudinal measures of cognition

In the cognitively unimpaired Aβ + cohort, a nomi-
nally significant association between cross-sectional 
PACC scores and accelerated ageing was observed 
with the Phenoage clock (Supplementary Table  1, 
Additional File 1). In the cognitively unimpaired 
Aβ − cohort, a nominally significant association 
between cross-sectional PACC scores and accelerated 
ageing was observed with the Horvath clock (Supple-
mentary Table  1, Additional File 1). These associa-
tions did not remain significant after FDR correction. 
In the whole cohort, nominally significant associations 
were observed between change in PACC performance 
and accelerated ageing, using the Hannum Clock 
(Supplementary Table  6, Additional File 1). In the 
Aβ + cohort, nominally significant associations were 
observed between change in PACC performance and 
accelerated ageing, using the Hannum clock (Supple-
mentary Table 6, Additional File 1). These associations 
did not remain significant after FDR correction.

Accelerated biological ageing is not associated with 
cross‑section and longitudinal measures of Aβ burden

No significant associations were observed between 
measures of age acceleration and Aβ burden, cross-
sectionally, or longitudinally in the AIBL sample 
(Supplementary Tables 2 and 7, Additional File 1).

Accelerated biological ageing is associated with 
cross‑sectional measures of brain volume

In the whole cohort, nominally significant associa-
tions between hippocampal volume and accelerated 
ageing were observed with the Hannum and Phe-
noage clocks and between ventricle volume and 
the Hannum clock (Table  2). In the Aβ + cohort, 
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nominally significant associations between hip-
pocampal volume and accelerated ageing were 
observed with the Zhang EN, Hannum and Pheno-
age clocks (Table  2). In the Aβ − cohort, a nomi-
nally significant association between ventricle vol-
ume and accelerated ageing was observed with the 
Phenoage clock (Table 2). In the cognitively unim-
paired cohort, nominally significant associations 
between white matter volume and hippocampal 
volume and accelerated ageing were observed with 

the Zhang BLUP and Hannum clocks (Table 2). In 
the cognitively unimpaired Aβ + cohort, nominally 
significant associations between hippocampal vol-
ume and accelerated ageing were observed with the 
Zhang EN, Hannum and Phenoage clocks (Table 2).

After FDR correction, in the whole cohort, 
two associations remained significant, being asso-
ciations between accelerated ageing and hip-
pocampal volume using the Hannum clock (esti-
mate =  − 0.029, SE = 0.009, CI =  − 0.047 −  − 0.110, 

Table 2   AIBL cross-sectional hippocampal volume

AIBL cross-sectional results for associations between accelerated ageing (DBAge) and hippocampal volume. p values shown repre-
sent values after FDR correction. Bolded values with ** represent values that remain significant after FDR correction
SE standard error, CI 95 95% confidence intervals, P predictor p value of clock used, EN elastic net BLUP best linear unbiased pre-
diction, Aβ Amyloid-β

Population (n) Predictor Estimate SE CI 95 P predictor

Whole cohort (329) Zhang EN  − 0.021 0.013  − 0.047 – 0.005 0.149
Zhang BLUP  − 0.009 0.013  − 0.034 – 0.016 0.471
Hannum  − 0.029 0.009  − 0.047 – − 0.11 0.007
Horvath  − 0.012 0.008  − 0.027 – 0.003 0.149
Phenoage  − 0.019 0.006  − 0.031 – − 0.006 0.009**

Aβ + (145) Zhang EN  − 0.050 0.021  − 0.092 – − 0.008 0.032**
Zhang BLUP  − 0.030 0.020  − 0.070 – 0.010 0.136
Hannum  − 0.045 0.014  − 0.072 – −  − 0.018 0.003**
Horvath  − 0.020 0.011  − 0.041 – 0.002 0.097
Phenoage  − 0.034 0.010  − 0.054 – − 0.015 0.003**

Aβ − (184) Zhang EN 0.002 0.015  − 0.028 – 0.032 0.875
Zhang BLUP 0.014 0.015  − 0.016 – 0.044 0.875
Hannum  − 0.009 0.011  − 0.031 – 0.014 0.875
Horvath 0.002 0.010  − 0.017 – 0.022 0.875
Phenoage 0.002 0.008  − 0.014 – 0.017 0.875

Cognitively unimpaired (220) Zhang EN  − 0.014 0.014  − 0.041 – 0.013 0.507
Zhang BLUP  − 0.001 0.014  − 0.028 – 0.025 0.921
Hannum  − 0.024 0.010  − 0.044 – − 0.004 0.099
Horvath  − 0.001 0.009  − 0.019 – 0.016 0.921
Phenoage  − 0.010 0.007  − 0.024 – 0.004 0.414

Cognitively unimpaired
Aβ + (65)

Zhang EN  − 0.069 0.025  − 0.120 – − 0.019 0.019**
Zhang BLUP  − 0.034 0.024  − 0.082 – 0.015 0.209
Hannum  − 0.058 0.019  − 0.096 – − 0.020 0.018**
Horvath  − 0.013 0.018  − 0.049 – 0.023 0.483
Phenoage  − 0.038 0.016  − 0.069 – − 0.007 0.030**

Cognitively unimpaired
Aβ − (155)

Zhang EN 0.004 0.016  − 0.029 – 0.036 0.828
Zhang BLUP 0.014 0.017  − 0.019 – 0.047 0.828
Hannum  − 0.015 0.012  − 0.039 – 0.010 0.828
Horvath 0.004 0.011  − 0.017 – 0.026 0.828
Phenoage  − 0.004 0.008  − 0.020 – 0.012 0.828
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p = 0.007; Table  2) and the Phenoage clocks (esti-
mate =  − 0.019, SE = 0.006, CI =  − 0.031 −  − 0.006, 
p = 0.009; Table  2). After FDR correction, in the 
Aβ + cohort, associations between hippocampal vol-
ume and accelerated ageing using the Zhang EN (esti-
mate =  − 0.050, SE = 0.021, CI =  − 0.092 −  − 0.008, 
p = 0.032, Table  2), Hannum (estimate =  − 0.045, 
SE = 0.014, CI =  − 0.072 −  − 0.018, p = 0.003; 
Table  2) and Phenoage (estimate =  − 0.034, 
SE = 0.010, CI =  − 0.054 −  − 0.015, p = 0.003; 
Table  2), clocks remained significant. In the 

cognitively unimpaired Aβ + cohort, associations 
between hippocampal volume and accelerated 
ageing using the Zhang EN (estimate =  − 0.069, 
SE = 0.025, CI =  − 0.120 −  − 0.019, p = 0.019; 
Table  2), Hannum (estimate =  − 0.058, SE = 0.019, 
CI =  − 0.096 −  − 0.020, p = 0.018; Table  2) 
and Phenoage (estimate =  − 0.038, SE = 0.016, 
CI =  − 0.069 −  − 0.007, p = 0.030; Table  2), 
clocks remained significant. This finding was 
validated within ADNI, in the cognitively unim-
paired Aβ + cohort, where a significant association 

Table 3   ADNI cross-sectional hippocampal volume

ADNI cross-sectional validation results for associations between accelerated ageing (DBAge) hippocampal volume. p values shown 
represent values before FDR correction. Bolded values with ** represent values that appeared significant
SE standard error, CI 95 95% confidence intervals, P predictor p value of clock used, EN elastic net, BLUP best linear unbiased pre-
diction, Aβ Amyloid-β

Population (n) Predictor Estimate SE CI 95 P predictor

Whole cohort (382) Zhang EN  − 0.004 0.006  − 0.016 – 0.007 0.482
Zhang BLUP  − 0.004 0.006  − 0.015 – 0.007 0.445
Hannum  − 0.002 0.004  − 0.011 – 0.006 0.602
Horvath  − 0.003 0.004  − 0.010 – 0.004 0.425
Phenoage  − 0.003 0.003  − 0.010 – 0.003 0.344

Aβ + (194) Zhang EN  − 0.007 0.009  − 0.025 – 0.010 0.392
Zhang BLUP  − 0.006 0.008  − 0.022 – 0.010 0.428
Hannum  − 0.005 0.006  − 0.017 – 0.006 0.371
Horvath  − 0.006 0.005  − 0.016 – 0.003 0.193
Phenoage  − 0.007 0.005  − 0.016 – 0.002 0.146

Aβ − (188) Zhang EN  − 0.001 0.008  − 0.017 – 0.015 0.866
Zhang BLUP  − 0.001 0.008  − 0.016 – 0.014 0.862
Hannum 0.005 0.006  − 0.008 – 0.017 0.471
Horvath 0.000 0.005  − 0.010 – 0.011 0.955
Phenoage 0.002 0.005  − 0.008 – 0.011 0.727

Cognitively unimpaired (117) Zhang EN  − 0.004 0.008  − 0.019 – 0.011 0.568
Zhang BLUP  − 0.008 0.007  − 0.021 – 0.006 0.264
Hannum  − 0.013 0.006  − 0.025 – 0.000 0.043
Horvath 0.000 0.005  − 0.009 – 0.010 0.920
Phenoage  − 0.002 0.004  − 0.011 – 0.007 0.662

Cognitively unimpaired Aβ + (34) Zhang EN  − 0.033 0.020  − 0.074 – 0.008 0.111
Zhang BLUP  − 0.031 0.016  − 0.064 – 0.002 0.061
Hannum  − 0.029 0.014  − 0.057 – − 0.001 0.046**
Horvath 0.005 0.011  − 0.018 – 0.029 0.647
Phenoage  − 0.013 0.011  − 0.036 – 0.011 0.268

Cognitively unimpaired Aβ − (83) Zhang EN  − 0.002 0.009  − 0.019 – 0.016 0.825
Zhang BLUP  − 0.002 0.008  − 0.018 – 0.013 0.770
Hannum  − 0.011 0.008  − 0.027 – 0.004 0.143
Horvath  − 0.004 0.006  − 0.015 – 0.008 0.544
Phenoage  − 0.001 0.005  − 0.012 – 0.009 0.802
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was observed between hippocampal volume and 
accelerated ageing, using the Hannum clock (esti-
mate =  − 0.029, SE = 0.014, − 0.057 −  − 0.001, 
p = 0.046; Table  3). No other associations remained 
significant after FDR correction.

Accelerated biological ageing is associated with 
longitudinal measures of brain volume

In the whole cohort, nominally significant associa-
tions were observed between hippocampal volume 
(Supplementary Table  10) and ventricle volume 
(Supplementary Table  11, Additional File 1) and 
accelerated ageing, using the Hannum Clock. In the 
Aβ + cohort, nominally significant associations were 
observed between hippocampal volume and acceler-
ated ageing, using the Hannum clock (Supplementary 
Table 10). In the cognitively unimpaired cohort, nom-
inally significant associations were observed between 
grey matter volume and accelerated ageing, using 
the Hannum clock (Supplementary Table  10, Addi-
tional File 1). However, no significant associations 
remained after FDR correction.

Discussion

This study aimed to comprehensively investigate 
several methods of ascertaining DNAm age to deter-
mine if accelerated ageing, calculated in two ways 
(DiffAge and DBAge), is associated with cross-sec-
tional measures of cognition and AD-related neuro-
imaging phenotypes and if an individual’s current 
DNAm age is a predictor of longitudinal changes in 
the brain and cognition. We report no association of 
accelerated ageing with brain Aβ burden or measures 
of cognition and there was no evidence to support 
the hypothesis that an individual’s current DNAm 
age is a predictor of future changes in either cogni-
tion or neuroimaging phenotypes. However, acceler-
ated ageing, when calculated using the Hannum and 
Phenoage clocks, was associated with cross-sectional 
measures of hippocampal volume, when assessed 
across all AIBL participants included. Further analy-
ses showed that accelerated ageing, as determined 
using the Zhang EN, Hannum and Phenoage clocks, 
was also associated with hippocampal volume when 
limited to Aβ + individuals and likewise when this 
analysis was further limited to cognitively unimpaired 

Aβ + individuals. However, after validation in the 
ADNI cohort, significant associations between accel-
erated ageing and hippocampal volume were limited 
to those derived from the Hannum clock only. In cog-
nitively unimpaired individuals with high brain Aβ 
burden, a smaller hippocampal volume was observed 
in individuals with a larger deviation of biological 
age from chronological age in both in the AIBL and 
the ADNI cohort. This relationship may be driven by 
an elevated brain Aβ burden (Aβ positive) in combi-
nation with an advanced biological age and explains 
why this relationship is not observed in the Aβ nega-
tive cohorts. There is some evidence to substantiate 
this by Levine et al. [29], in their study in which there 
was an association with age acceleration and Aβ load. 
However, it should be noted that this study was per-
formed on post-mortem pre-frontal cortex brain tissue 
and the results cannot be directly compared. Further 
research is therefore needed to examine this relation-
ship in more detail.

Whilst not observed in the present study, longitudi-
nal associations between decline in cognition and age 
acceleration have been previously observed. Results 
from the Betula study in Sweden demonstrated that 
episodic memory performance over 15  years was 
maintained in ageing in those individuals with a 
lower DNAm age (calculated using the Horvath 
clock) [49]. This study included a small sample size 
of 52 participants and a low participant baseline age 
(55–65 years), both of which may account for the dif-
ference in their findings. In a twin study investigat-
ing the relationship between age acceleration and 
cognitive impairment, Vaccarino et al. [50] showed a 
faster rate of decline in cognition in individuals who 
had an older DNAm age (calculated using the Hor-
vath clock) relative to their twin, over an average of 
11.5 years. Moreover, this study only included men, 
and it has been demonstrated that men have a greater 
age acceleration than women [51]. In a recent study, 
Beydoun et  al. [52] found an association between 
accelerated age and decline in attention and visu-
ospatial/visuoconstruction ability, in men but not 
women, using the Hannum clock. In contrast to the 
study presented here, which focussed on the PACC as 
a measure of global cognitive decline, Beydoun et al. 
[52] and Degerman et  al. [49] used domain specific 
measures which may not be directly comparable. 
Additionally, a constraint of their analysis, and likely 
their findings, was the inclusion of two timepoints for 
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the cognitive outcomes of interest, and though they 
report significant findings, these could be due to ran-
dom variations in cognitive performance rather than 
a meaningful decline over time [52]. In the Lothian 
Birth Cohort, age acceleration (calculated using the 
Horvath clock) was associated with cross-sectional 
measures of lower cognition (general fluid type intel-
ligence derived from the Wechsler Adult Intelligence 
Scale-IIIUK), weaker grip strength and poorer lung 
function [53]. A lack of longitudinal association may 
have been caused by the relatively short follow-up 
time (6 years), where only small changes in cognition 
occurred [53].

Similar to studies assessing relationships with 
cognition, there is also a lack of consistency across 
studies with respect to neuroimaging phenotypes. 
Further, there is very limited research with regard to 
the association of accelerated ageing and neuroimag-
ing phenotypes. To our knowledge, this is the first 
study to uncover an association between age accel-
eration and reduced hippocampal volume and spe-
cifically only in preclinical AD and not with ageing 
in the absence of disease (brain Aβ). A small num-
ber of other studies have investigated the association 
of age acceleration and neuroimaging measures with 
varied results. Hodgson et al. [54] observed that with 
increasing age acceleration (calculated using the Hor-
vath clock), white matter integrity, both locally and 
within specific regions of the brain, decreased. Simi-
larly, Hillary et al. [55] observed that higher DNAm 
age (calculated using the GrimAge clock) was signifi-
cantly associated with decreased overall brain volume 
(white and grey matter) and increased white matter 
hyperintensities. In the current study, nominally sig-
nificant associations between age acceleration and 
an increase in ventricle volume were observed in the 
AIBL cohort, which is indicative of an overall smaller 
brain volume. Levine et  al. [29] demonstrated that 
age acceleration was associated with diffuse plaques, 
neuritic plaques, Aβ burden and a trend towards an 
association with neurofibrillary tangles. Chouliaras 
et al. [56] utilised the Whitehall II imaging sub-study 
and observed a significant association between accel-
erated age (calculated using the Hannum clock) and 
MRI measures; global measure of fractional anisot-
ropy and decreased mean diffusivity, which appeared 
to be in the opposite direction of similar studies [57]. 
As is evident, it is hard to compare the results of stud-
ies that investigate associations with age acceleration 

due to a lack of consistency in the availability of data 
between cohorts, as well as study design, outcomes 
of interest and clock choice. As such, very few find-
ings have been replicated across more than one study, 
which increases the potential of false positive findings 
being published [58].

Finally, the limited findings across studies might 
be reflective of the limitations of the existing clocks 
themselves. It should be noted that whilst epigenetic 
clocks are good at predicting age, there is some evi-
dence to suggest that bespoke clocks that are more 
disease and/or outcome/phenotype-specific would be 
better suited for assessing pathological changes and 
disease progression in unavailable tissue, such as the 
brain [59, 60]. For example, Grodstein et  al. com-
pared the performance of an epigenetic clock trained 
in cortex to clocks trained in blood, with stronger 
associations present across all outcomes of interest in 
the clock trained in brain tissue [60]. Similarly, Por-
ter et  al. demonstrated that in clocks trained in spe-
cific tissues, the CpG sites included often lead to poor 
predictive capabilities in other tissues [59]. However, 
one of the overarching aims of the current study was 
to assess if markers in peripheral blood are truly 
reflective of the same changes as those which are 
observed in the brain and if blood has the potential 
to be utilised as a surrogate tissue, as obtaining the 
tissue of interest, regardless of its performance, is not 
always feasible. The results presented in this study are 
robust and provide evidence that supports the role of 
epigenetic clocks in identifying AD-related pheno-
types; however, further research, for example into the 
efficacy of phenotypic specific epigenetic ‘clocks’ or 
profiles, is warranted.

Limitations

A limitation of this study is that our age acceleration 
measures were derived from DNA extracted from 
whole blood and not brain tissue. However, it has 
previously been demonstrated that age-related DNA 
changes are conserved across tissue and cell types 
[11, 61]. Additionally, it is evidenced in several disor-
ders including Huntington’s disease [22], Down syn-
drome [16] and HIV infections [19] that age accelera-
tion can be observed in both blood and brain tissue. 
Furthermore, there is a strong correlation between 
epigenetic profiles of different tissues sampled from 
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the same individual, with the observed correlation 
between blood and brain methylation being higher 
than the correlation for gene expression [11, 61]. This 
study was performed in the AIBL cohort and vali-
dated in the ADNI cohort, both of which are repre-
sentative of a predominantly Caucasian population. 
As such, these findings should be replicated in ethni-
cally diverse cohorts to determine whether the meth-
ods are applicable to more generalised populations. 
As well, due to the voluntary nature of the AIBL 
and ADNI studies, the outcome are cohorts that are 
highly educated, and any observations made here 
might not be observed in general populations. Addi-
tionally, within the cohorts, there is an overrepresen-
tation of samples collected in the later stages of life, 
and with this, there is a relatively narrow age range 
at the higher age spectrum. This has previously been 
observed to potentially influence the calculation of 
age estimates, specifically through the underestima-
tion of age [62–64]. Even though the EPIC chip is 
currently the most comprehensive array chip avail-
able, it only assesses ~ 3% of CpG sites within the 
genome, it is possible that the CpGs present do not 
probe some of the most biologically informative sites. 
As well, the more biologically informative CpG sites 
may have not been selected by the modelling algo-
rithms as they did not correlate well with chronologi-
cal age.

Conclusion

This study is one of only a few which has examined 
cross-sectional and longitudinal changes in cogni-
tive function and the neuroimaging phenotypes of 
volumetric MRI and Amyloid-β PET as a function of 
age acceleration. Further, it is the first to assess and 
compare multiple methodologies for the calculation 
of age acceleration in two well-characterised longitu-
dinal ageing cohorts. Although we were only able to 
identify an association of age acceleration with cross-
sectional hippocampal volume, our study is strength-
ened by the use of a comprehensive set of epigenetic 
clocks, derived using the best genome-wide DNA 
methylation array currently available. Our results 
contribute to a growing literature that supports the 
role of epigenetic modifications in ageing and Alzhei-
mer’s disease-related phenotypes. Due to their poten-
tially reversible nature, epigenetic modifications may 

provide a powerful means for a therapeutic target and 
prevention and intervention strategies in ageing and 
age-related diseases, such as Alzheimer’s disease.
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