425 research outputs found
Triton photodisintegration in three-dimensional approach
Two- and three- particles photodisintegration of the triton is investigated
in a three-dimensional (3D) Faddeev approach. For this purpose the Jacobi
momentum vectors for three particles system and spin-isospin quantum numbers of
the individual nucleons are considered. Based on this picture the three-nucleon
Faddeev integral equations with the two-nucleon interaction are formulated
without employing the partial wave decomposition. The single nucleon current as
well as and like exchange currents are used in an appropriate
form to be employed in 3D approach. The exchange currents are derived from AV18
NN force. The two-body t-matrix, Deuteron and Triton wave functions are
calculated in the 3D approach by using AV18 potential. Benchmarks are presented
to compare the total cross section for the two- and three- particles
photodisintegration in the range of . The 3D Faddeev
approach shows promising results
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
The upgrade of the ALICE TPC with GEMs and continuous readout
The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio
ϒ production in p–Pb collisions at √sNN=8.16 TeV
ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio
- …