89 research outputs found

    Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of circulating tumor cells (CTC) in the peripheral blood of cancer patients has been described for various solid tumors and their clinical relevance has been shown. CTC detection based on the analysis of epithelial antigens might be hampered by the genetic heterogeneity of the primary tumor and loss of epithelial antigens. Therefore, we aimed to identify new gene markers for the PCR-based detection of CTC in female cancer patients.</p> <p>Methods</p> <p>Gene expression of 38 cancer cell lines (breast, ovarian, cervical and endometrial) and of 10 peripheral blood mononuclear cell (PBMC) samples from healthy female donors was measured using microarray technology (Applied Biosystems). Differentially expressed genes were identified using the maxT test and the 50% one-sided trimmed maxT-test. Confirmatory RT-qPCR was performed for 380 gene targets using the AB TaqMan<sup>® </sup>Low Density Arrays. Then, 93 gene targets were analyzed using the same RT-qPCR platform in tumor tissues of 126 patients with primary breast, ovarian or endometrial cancer. Finally, blood samples from 26 healthy women and from 125 patients (primary breast, ovarian, cervical, or endometrial cancer, and advanced breast cancer) were analyzed following OncoQuick enrichment and RNA pre-amplification. Likewise, <it>hMAM </it>and <it>EpCAM </it>gene expression was analyzed in the blood of breast and ovarian cancer patients. For each gene, a cut-off threshold value was set at three standard deviations from the mean expression level of the healthy controls to identify potential markers for CTC detection.</p> <p>Results</p> <p>Six genes were over-expressed in blood samples from 81% of patients with advanced and 29% of patients with primary breast cancer. <it>EpCAM </it>gene expression was detected in 19% and 5% of patients, respectively, whereas <it>hMAM </it>gene expression was observed in the advanced group (39%) only. Multimarker analysis using the new six gene panel positively identified 44% of the cervical, 64% of the endometrial and 19% of the ovarian cancer patients.</p> <p>Conclusions</p> <p>The panel of six genes was found superior to <it>EpCAM </it>and <it>hMAM </it>for the detection of circulating tumor cells in the blood of breast cancer, and they may serve as potential markers for CTC derived from endometrial, cervical, and ovarian cancers.</p

    An evidence-based framework for predicting the impact of differing autotroph-heterotroph thermal sensitivities on consumer-prey dynamics

    Get PDF
    Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem dynamics, for example, the predicted increases in cyanobacterial blooms associated with global warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an appropriate framework linking experimental data with theory is lacking. Using ecophysiological data to develop a novel model structure, we provide the first validation of this thermal sensitivity hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey. Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion, growth and mortality rates, using an ecologically and economically important system (cyanobacteria grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of temperature impacts on consumer–prey dynamics by comparing simulations with microcosm observations. Then, through simulations, we indicate our conclusions remain valid, even with large changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and, critically, provide a novel model framework for needed, continued assessment

    Prevalence of Abnormalities in Vestibular Function and Balance among HIV-Seropositive and HIV-Seronegative Women and Men

    Get PDF
    BACKGROUND: Most HIV-seropositive subjects in western countries receive highly active antiretroviral therapy (HAART). Although many aspects of their health have been studied, little is known about their vestibular and balance function. The goals of this study were to determine the prevalences of vestibular and balance impairments among HIV-seropositive and comparable seronegative men and women and to determine if those groups differed. METHODS: Standard screening tests of vestibular and balance function, including head thrusts, Dix-Hallpike maneuvers, and Romberg balance tests on compliant foam were performed during semiannual study visits of participants who were enrolled in the Baltimore and Washington, D. C. sites of the Multicenter AIDS Cohort Study and the Women's Interagency HIV Study. RESULTS: No significant differences by HIV status were found on most tests, but HIV-seropositive subjects who were using HAART had a lower frequency of abnormal Dix-Hallpike nystagmus than HIV-seronegative subjects. A significant number of nonclassical Dix-Hallpike responses were found. Age was associated with Romberg scores on foam with eyes closed. Sex was not associated with any of the test scores. CONCLUSION: These findings suggest that HAART-treated HIV infection has no harmful association with vestibular function in community-dwelling, ambulatory men and women. The association with age was expected, but the lack of association with sex was unexpected. The presence of nonclassical Dix-Hallpike responses might be consistent with central nervous system lesions

    Risk Factors for Ocular Chlamydia after Three Mass Azithromycin Distributions

    Get PDF
    Trachoma, which is the leading infectious cause of blindness worldwide, is caused by repeated ocular infection with Chlamydia trachomatis. Treatment for trachoma includes mass azithromycin treatments to the entire community. The World Health Organization recommends at least 3 rounds of annual mass antibiotic distributions in areas with trachoma, with further mass treatments based on the prevalence of trachoma. However, there are other options for communities that have received several rounds of treatment. For example, programs could continue antibiotic treatments only in those households most likely to have infected individuals. In this study, we performed trachoma monitoring on children from 12 Ethiopian communities one year after a third mass azithromycin treatment, and conducted a household survey at the same time. We found that children were more likely to be infected with ocular chlamydia if they had ocular inflammatory signs or ocular discharge, or if they had missed the preceding antibiotic treatment, had an infected sibling, or came from a larger community. These risk factors suggest that after mass azithromycin treatments, trachoma programs could consider continuing antibiotic distributions to households that have missed prior antibiotic distributions, in households with children who have the clinical signs of trachoma, and in larger communities

    Express Attentional Re-Engagement but Delayed Entry into Consciousness Following Invalid Spatial Cues in Visual Search

    Get PDF
    Background: In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects. Methodology/Principal Findings: Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasiinstantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect. Conclusions/Significance: Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by th

    Interest groups in multiple streams:specifying their involvement in the framework

    Get PDF
    Although interests inhabit a central place in the multiple streams framework (MSF), interest groups have played only a minor role in theoretical and empirical studies until now. In Kingdon’s original conception, organized interests are a key variable in the politics stream. Revisiting Kingdon’s concept with a particular focus on interest groups and their activities—in different streams and at various levels—in the policy process, we take this argument further. In particular, we argue that specifying groups’ roles in other streams adds value to the explanatory power of the framework. To do this, we look at how interest groups affect problems, policies, and politics. The influence of interest groups within the streams is explained by linking the MSF with literature on interest intermediation. We show that depending on the number of conditions and their activity level, interest groups can be involved in all three streams. We illustrate this in case studies reviewing labor market policies in Germany and chemicals regulation at the European level

    Anthropogenic perturbation of the carbon fluxes from land to ocean

    Full text link
    A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore