8 research outputs found

    Mild steel GMA welds microstructural analysis and estimation using sensor fusion and neural network modeling

    Get PDF
    This study aims at evaluating the efficiency of sensor fusion, based on neural networks, to estimate the microstructural characteristics of both the weld bead and base material in GMAW processes. The weld beads of AWS ER70S-6 wire were deposited on SAE 1020 steel plates varying welding voltage, welding speed, and wire-feed speed. The thermal behavior of the material during the process execution was analyzed using thermographic information gathered by an infrared camera. The microstructure was characterized by optical (confocal) microscopy, scanning electron microscopy, and X-ray Diffraction tests. Finally, models for estimating the weld bead microstructure were developed by fusing all the information through a neural network modeling approach. A R value of 0.99472 was observed for modelling all zones of microstructure in the same ANN using Bayesian Regularization with 17 and 15 neurons in the first and second hidden layers, respectively, with 4 training runs (which was the lowest R value among all tested configurations). The results obtained prove that RNAs can be used to assist the project of welded joints as they make it possible to estimate the extension of HAZ

    Endothelial dysfunction and vascular disease – a 30th anniversary update

    No full text

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population

    Endothelial dysfunction and vascular disease - a 30th anniversary update

    No full text

    Cardiac arrest under special circumstances

    No full text
    corecore