238 research outputs found

    Varenicline Interactions at the 5-HT3 Receptor Ligand Binding Site are Revealed by 5-HTBP.

    Get PDF
    Cys-loop receptors are the site of action of many therapeutic drugs. One of these is the smoking cessation agent varenicline, which has its major therapeutic effects at nicotinic acetylcholine (nACh) receptors but also acts at 5-HT3 receptors. Here, we report the X-ray crystal structure of the 5-HT binding protein (5-HTBP) in complex with varenicline, and test the predicted interactions by probing the potency of varenicline in a range of mutant 5-HT3 receptors expressed in HEK293 cells and Xenopus oocytes. The structure reveals a range of interactions between varenicline and 5-HTBP. We identified residues within 5 Å of varenicline and substituted the equivalent residues in the 5-HT3 receptor with Ala or a residue with similar chemical properties. Functional characterization of these mutant 5-HT3 receptors, using a fluorescent membrane potential dye in HEK cells and voltage clamp in oocytes, supports interactions between varenicline and the receptor that are similar to those in 5-HTBP. The structure also revealed C-loop closure that was less than in the 5-HT-bound 5-HTBP, and hydrogen bonding between varenicline and the complementary face of the binding pocket via a water molecule, which are characteristics consistent with partial agonist behavior of varenicline in the 5-HT3 receptor. Together, these data reveal detailed insights into the molecular interaction of varenicline in the 5-HT3 receptor.Supported by grants from the Wellcome Trust (81925) and the MRC to S.C.R.L.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/cn500369

    Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses.

    Get PDF
    Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture

    CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats

    Get PDF
    Clustered regularly interspaced short palindromic repeat (CRISPR) elements are a particular family of tandem repeats present in prokaryotic genomes, in almost all archaea and in about half of bacteria, and which participate in a mechanism of acquired resistance against phages. They consist in a succession of direct repeats (DR) of 24–47 bp separated by similar sized unique sequences (spacers). In the large majority of cases, the direct repeats are highly conserved, while the number and nature of the spacers are often quite diverse, even among strains of a same species. Furthermore, the acquisition of new units (DR + spacer) was shown to happen almost exclusively on one side of the locus. Therefore, the CRISPR presents an interesting genetic marker for comparative and evolutionary analysis of closely related bacterial strains. CRISPRcompar is a web service created to assist biologists in the CRISPR typing process. Two tools facilitates the in silico investigation: CRISPRcomparison and CRISPRtionary. This website is freely accessible at http://crispr.u-psud.fr/CRISPRcompar/

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3 s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C)

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1, and growth rates between 2 and 37 nm h -1. The corresponding H2O concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C

    A 52-Week Placebo-Controlled Trial of Evolocumab in Hyperlipidemia

    Get PDF
    BACKGROUND Evolocumab, a monoclonal antibody that inhibits proprotein convertase subtilisin/ kexin type 9 (PCSK9), significantly reduced low-density lipoprotein (LDL) cholesterol levels in phase 2 studies. We conducted a phase 3 trial to evaluate the safety and efficacy of 52 weeks of treatment with evolocumab. METHODS We stratified patients with hyperlipidemia according to the risk categories outlined by the Adult Treatment Panel III of the National Cholesterol Education Program. On the basis of this classification, patients were started on background lipid-lowering therapy with diet alone or diet plus atorvastatin at a dose of 10 mg daily, atorvastatin at a dose of 80 mg daily, or atorvastatin at a dose of 80 mg daily plus ezetimibe at a dose of 10 mg daily, for a run-in period of 4 to 12 weeks. Patients with an LDL cholesterol level of 75 mg per deciliter (1.9 mmol per liter) or higher were then randomly assigned in a 2:1 ratio to receive either evolocumab (420 mg) or placebo every 4 weeks. The primary end point was the percent change from baseline in LDL cholesterol, as measured by means of ultracentrifugation, at week 52. RESULTS Among the 901 patients included in the primary analysis, the overall least-squares mean (±SE) reduction in LDL cholesterol from baseline in the evolocumab group, taking into account the change in the placebo group, was 57.0±2.1% (P<0.001). The mean reduction was 55.7±4.2% among patients who underwent background therapy with diet alone, 61.6±2.6% among those who received 10 mg of atorvastatin, 56.8±5.3% among those who received 80 mg of atorvastatin, and 48.5±5.2% among those who received a combination of 80 mg of atorvastatin and 10 mg of ezetimibe (P<0.001 for all comparisons). Evolocumab treatment also significantly reduced levels of apolipoprotein B, non-high-density lipoprotein cholesterol, lipoprotein(a), and triglycerides. The most common adverse events were nasopharyngitis, upper respiratory tract infection, influenza, and back pain. CONCLUSIONS At 52 weeks, evolocumab added to diet alone, to low-dose atorvastatin, or to high-dose atorvastatin with or without ezetimibe significantly reduced LDL cholesterol levels in patients with a range of cardiovascular risks

    Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs.</p> <p>Results</p> <p>Using a combination of <it>in silico </it>and experimental approaches, we identified and characterized novel <it>P</it>. <it>abyssi </it>ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel <it>P</it>. <it>abyssi </it>ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four <it>P</it>. <it>abyssi </it>CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized.</p> <p>Conclusions</p> <p>This work proposes a revised annotation of CRISPR loci in <it>P</it>. <it>abyssi </it>and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.</p
    corecore